File size: 2,143 Bytes
74852ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: peft
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: emotion-model11_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# emotion-model11_2

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0629
- Accuracy: 0.5583
- F1: 0.4935

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 1.0   | 41   | 1.3051          | 0.4356   | 0.2643 |
| 1.3528        | 2.0   | 82   | 1.2167          | 0.4540   | 0.3105 |
| 1.277         | 3.0   | 123  | 1.1665          | 0.4908   | 0.4415 |
| 1.1653        | 4.0   | 164  | 1.0812          | 0.5276   | 0.4454 |
| 1.1339        | 5.0   | 205  | 1.1394          | 0.5092   | 0.4484 |
| 1.1339        | 6.0   | 246  | 1.1019          | 0.5153   | 0.4553 |
| 1.1081        | 7.0   | 287  | 1.0528          | 0.5399   | 0.4727 |
| 1.0794        | 8.0   | 328  | 1.0629          | 0.5583   | 0.4935 |
| 1.0727        | 9.0   | 369  | 1.0426          | 0.5399   | 0.4737 |
| 1.0608        | 10.0  | 410  | 1.0567          | 0.5399   | 0.4856 |


### Framework versions

- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1