|
--- |
|
base_model: |
|
- rinna/gemma-2-Baku-2b-it |
|
- prithivMLmods/GWQ2b |
|
library_name: transformers |
|
tags: |
|
- mergekit |
|
- merge |
|
license: gemma |
|
inference: true |
|
pipeline_tag: text-generation |
|
widget: |
|
- messages: |
|
- role: user |
|
content: こんにちは! |
|
- messages: |
|
- role: user |
|
content: 魚を捌くのは難しいですか? |
|
- messages: |
|
- role: user |
|
content: ナイジェリアの首都はどこですか? |
|
- messages: |
|
- role: user |
|
content: hello! |
|
- messages: |
|
- role: user |
|
content: 貝は砂浜に落ちてるものですか? |
|
- messages: |
|
- role: user |
|
content: おはようございます。 |
|
- messages: |
|
- role: user |
|
content: 錫はどういうものに使われますか? |
|
- messages: |
|
- role: user |
|
content: 露骨とあからさまが違う言葉であることを証明してください。 |
|
- messages: |
|
- role: user |
|
content: 你好 |
|
- messages: |
|
- role: user |
|
content: 魚を捌くのは難しいですか? |
|
- messages: |
|
- role: user |
|
content: Où se trouve Shinjuku ? |
|
- messages: |
|
- role: user |
|
content: Bonjour! |
|
--- |
|
# merge |
|
|
|
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). |
|
|
|
## Merge Details |
|
### Merge Method |
|
|
|
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [prithivMLmods/GWQ2b](https://huggingface.co/prithivMLmods/GWQ2b) as a base. |
|
|
|
### Models Merged |
|
|
|
The following models were included in the merge: |
|
* [rinna/gemma-2-Baku-2b-it](https://huggingface.co/rinna/gemma-2-Baku-2b-it) |
|
|
|
### Configuration |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
|
|
|
|
models: |
|
- model: rinna/gemma-2-Baku-2b-it |
|
parameters: |
|
weight: 1 |
|
density: 1 |
|
merge_method: ties |
|
base_model: prithivMLmods/GWQ2b |
|
parameters: |
|
weight: 1 |
|
density: 1 |
|
normalize: true |
|
int8_mask: true |
|
dtype: float16 |
|
|
|
``` |
|
# sample |
|
|
|
```python |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("prithivMLmods/GWQ2b") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Sakalti/SJT-2B-V1.1", |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
input_text = "おはようこざいます!。" |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids, max_new_tokens=200, temperature=0.7) |
|
print(tokenizer.decode(outputs[0])) |
|
|
|
``` |