SJT-2B-V1.1 / README.md
Sakalti's picture
Update README.md
ad030c0 verified
---
base_model:
- rinna/gemma-2-Baku-2b-it
- prithivMLmods/GWQ2b
library_name: transformers
tags:
- mergekit
- merge
license: gemma
inference: true
pipeline_tag: text-generation
widget:
- messages:
- role: user
content: こんにちは!
- messages:
- role: user
content: 魚を捌くのは難しいですか?
- messages:
- role: user
content: ナイジェリアの首都はどこですか?
- messages:
- role: user
content: hello!
- messages:
- role: user
content: 貝は砂浜に落ちてるものですか?
- messages:
- role: user
content: おはようございます。
- messages:
- role: user
content: 錫はどういうものに使われますか?
- messages:
- role: user
content: 露骨とあからさまが違う言葉であることを証明してください。
- messages:
- role: user
content: 你好
- messages:
- role: user
content: 魚を捌くのは難しいですか?
- messages:
- role: user
content: se trouve Shinjuku ?
- messages:
- role: user
content: Bonjour!
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [prithivMLmods/GWQ2b](https://huggingface.co/prithivMLmods/GWQ2b) as a base.
### Models Merged
The following models were included in the merge:
* [rinna/gemma-2-Baku-2b-it](https://huggingface.co/rinna/gemma-2-Baku-2b-it)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: rinna/gemma-2-Baku-2b-it
parameters:
weight: 1
density: 1
merge_method: ties
base_model: prithivMLmods/GWQ2b
parameters:
weight: 1
density: 1
normalize: true
int8_mask: true
dtype: float16
```
# sample
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("prithivMLmods/GWQ2b")
model = AutoModelForCausalLM.from_pretrained(
"Sakalti/SJT-2B-V1.1",
device_map="auto",
torch_dtype=torch.float16,
)
input_text = "おはようこざいます!。"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=200, temperature=0.7)
print(tokenizer.decode(outputs[0]))
```