merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the TIES merge method using prithivMLmods/GWQ2b as a base.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
models:
- model: rinna/gemma-2-Baku-2b-it
parameters:
weight: 1
density: 1
merge_method: ties
base_model: prithivMLmods/GWQ2b
parameters:
weight: 1
density: 1
normalize: true
int8_mask: true
dtype: float16
sample
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("prithivMLmods/GWQ2b")
model = AutoModelForCausalLM.from_pretrained(
"Sakalti/SJT-2B-V1.1",
device_map="auto",
torch_dtype=torch.float16,
)
input_text = "おはようこざいます!。"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=200, temperature=0.7)
print(tokenizer.decode(outputs[0]))
- Downloads last month
- 39
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.