|
--- |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter9_sftsd2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-2b_hs2_accumulatesubsample_iter9_sftsd2 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1952 |
|
- Num Input Tokens Seen: 5025616 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 2 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.3909 | 0 | |
|
| 1.3245 | 0.0534 | 5 | 1.2768 | 275360 | |
|
| 1.1423 | 0.1069 | 10 | 1.2008 | 543560 | |
|
| 0.9748 | 0.1603 | 15 | 1.1848 | 809872 | |
|
| 1.0866 | 0.2138 | 20 | 1.2027 | 1077984 | |
|
| 0.8487 | 0.2672 | 25 | 1.2109 | 1343264 | |
|
| 0.8541 | 0.3206 | 30 | 1.2285 | 1613856 | |
|
| 0.7718 | 0.3741 | 35 | 1.2338 | 1883800 | |
|
| 0.752 | 0.4275 | 40 | 1.2181 | 2154856 | |
|
| 0.6467 | 0.4810 | 45 | 1.2274 | 2428208 | |
|
| 0.5452 | 0.5344 | 50 | 1.2074 | 2695040 | |
|
| 0.5495 | 0.5878 | 55 | 1.2047 | 2970696 | |
|
| 0.5562 | 0.6413 | 60 | 1.2104 | 3245864 | |
|
| 0.5367 | 0.6947 | 65 | 1.1986 | 3512208 | |
|
| 0.4594 | 0.7482 | 70 | 1.1975 | 3784176 | |
|
| 0.5366 | 0.8016 | 75 | 1.1995 | 4052712 | |
|
| 0.3897 | 0.8550 | 80 | 1.1944 | 4323640 | |
|
| 0.4671 | 0.9085 | 85 | 1.1959 | 4591856 | |
|
| 0.4434 | 0.9619 | 90 | 1.1870 | 4864704 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|