File size: 2,873 Bytes
d03f4d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter9_sftsd2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter9_sftsd2

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1952
- Num Input Tokens Seen: 5025616

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.3245        | 0.0534 | 5    | 1.2768          | 275360            |
| 1.1423        | 0.1069 | 10   | 1.2008          | 543560            |
| 0.9748        | 0.1603 | 15   | 1.1848          | 809872            |
| 1.0866        | 0.2138 | 20   | 1.2027          | 1077984           |
| 0.8487        | 0.2672 | 25   | 1.2109          | 1343264           |
| 0.8541        | 0.3206 | 30   | 1.2285          | 1613856           |
| 0.7718        | 0.3741 | 35   | 1.2338          | 1883800           |
| 0.752         | 0.4275 | 40   | 1.2181          | 2154856           |
| 0.6467        | 0.4810 | 45   | 1.2274          | 2428208           |
| 0.5452        | 0.5344 | 50   | 1.2074          | 2695040           |
| 0.5495        | 0.5878 | 55   | 1.2047          | 2970696           |
| 0.5562        | 0.6413 | 60   | 1.2104          | 3245864           |
| 0.5367        | 0.6947 | 65   | 1.1986          | 3512208           |
| 0.4594        | 0.7482 | 70   | 1.1975          | 3784176           |
| 0.5366        | 0.8016 | 75   | 1.1995          | 4052712           |
| 0.3897        | 0.8550 | 80   | 1.1944          | 4323640           |
| 0.4671        | 0.9085 | 85   | 1.1959          | 4591856           |
| 0.4434        | 0.9619 | 90   | 1.1870          | 4864704           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1