|
---
|
|
license: apache-2.0
|
|
language:
|
|
- en
|
|
---
|
|
|
|
# Mixtral-8x7b-Instruct-v0.1-int8-ov
|
|
|
|
* Model creator: [Mistral AI](https://huggingface.co/mistralai)
|
|
* Original model: [Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
|
|
|
|
## Description
|
|
|
|
This is [Mixtral-8x7b-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
|
|
|
|
## Quantization Parameters
|
|
|
|
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
|
|
|
* mode: **INT8_ASYM**
|
|
|
|
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
|
|
|
|
## Compatibility
|
|
|
|
The provided OpenVINO™ IR model is compatible with:
|
|
|
|
* OpenVINO version 2024.0.0 and higher
|
|
* Optimum Intel 1.16.0 and higher
|
|
|
|
## Running Model Inference
|
|
|
|
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
|
|
|
```
|
|
pip install optimum[openvino]
|
|
```
|
|
|
|
2. Run model inference:
|
|
|
|
```
|
|
from transformers import AutoTokenizer
|
|
from optimum.intel.openvino import OVModelForCausalLM
|
|
|
|
model_id = "OpenVINO/mixtral-8x7b-instruct-v0.1-int8-ov"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
model = OVModelForCausalLM.from_pretrained(model_id)
|
|
|
|
|
|
messages = [
|
|
{"role": "user", "content": "What is your favourite condiment?"},
|
|
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
|
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
|
]
|
|
|
|
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
|
|
|
outputs = model.generate(inputs, max_new_tokens=20)
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
```
|
|
|
|
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
|
|
|
## Limitations
|
|
|
|
Check the original model card for [limitations](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#limitations).
|
|
|
|
## Legal information
|
|
|
|
The original model is distributed under [Apache 2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1). |