File size: 2,748 Bytes
0c1750e
 
4d807d6
 
0c1750e
4d807d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

license: apache-2.0
language:
- en
---


# Mixtral-8x7b-Instruct-v0.1-int8-ov

 * Model creator: [Mistral AI](https://huggingface.co/mistralai)
 * Original model: [Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)

## Description

This is [Mixtral-8x7b-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).

## Quantization Parameters

Weight compression was performed using `nncf.compress_weights` with the following parameters:

* mode: **INT8_ASYM**



For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).



## Compatibility



The provided OpenVINO™ IR model is compatible with:



* OpenVINO version 2024.0.0 and higher

* Optimum Intel 1.16.0 and higher



## Running Model Inference



1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:



```

pip install optimum[openvino]

```



2. Run model inference:



```

from transformers import AutoTokenizer

from optimum.intel.openvino import OVModelForCausalLM



model_id = "OpenVINO/mixtral-8x7b-instruct-v0.1-int8-ov"

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = OVModelForCausalLM.from_pretrained(model_id)





messages = [

    {"role": "user", "content": "What is your favourite condiment?"},

    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},

    {"role": "user", "content": "Do you have mayonnaise recipes?"}

]



inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")



outputs = model.generate(inputs, max_new_tokens=20)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))

```



For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).



## Limitations



Check the original model card for [limitations](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#limitations).



## Legal information



The original model is distributed under [Apache 2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).