metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
hasAdditionalInformation: TFP10-73Pepsi Max X 264 TFP10-174 BAT Velo X
353, hasColourDetails: 1pp - Face Print, hasCreatedDate: 2024-06-12,
hasCustomerHomeCountry: United Kingdom, hasCustomerID: 25892,
hasCustomerName: Co-operative Group Limited.(Co-operative Group Limited
(Co-op Food)), hasCutting: Cut to shape, hasElementID: 3343462,
hasElementTitle: POS028 SECURITY SHROUD, hasFinishedSizeHeight: 1540,
hasFinishedSizeWidth: 600, hasFlatSizeHeight: 3080, hasFlatSizeWidth: 600,
hasFscPaperBeenSpecified: No, hasInternalID:
354d490a-f709-4034-af56-3e0b28ee34ba, hasMachineFinishing: Yes,
hasMachineFinishingDetails: Trimmed to Size, Fold in Half, Weld Long Edges
Only with 2 x PP Eyelets Positioned as Template - Fold Twice (to 600x515
approx) for Flat Packing Pack in 2's, hasMaterialCategory: Plastic,
hasMaterialDescription: 180gsm White/White Woven PE,
hasMaterialThicknessOrWeight: 180, hasMaterialType: Polypropylene,
hasMaterialUnitOfMeasure: GSM, hasNumberOfVersions: 2,
hasPackingRequirements: Delivery to K Displays, Smith Way Ossett, FAO Dean
Newbold. Delivery required Friday 21st June. Please book in 48hrs in
advance and mark all pallets on boxes with code, qty and P10 2024 Co-op
Campaign, hasPrice: 3513.22 GBP, hasPrintedSides: Single sided,
hasProofType: PDF digital proof, hasQuantity: 617,
hasRecycledContentBeenOffered: No, hasSupplierName: Dominion Print
Limited(Dominion Print Limited), hasTotalColours: 4, hasUnitOfMeasure:
Millimetres (mm),
- text: >-
hasAdditionalInformation: Mailed First Class, hasArtworkDoubleSidedStatus:
Double Sided Different, hasCreatedDate: 2024-03-21,
hasCustomerHomeCountry: United States, hasCustomerID: 32065,
hasCustomerName: Republic Services, Inc(Republic Services), hasCutting:
Trim to size, hasElementID: 3192439, hasElementTitle: Crockett Residental
PC Mailer 2024, hasFinishedSizeHeight: 4, hasFinishedSizeWidth: 6,
hasFscPaperBeenSpecified: No, hasInternalID:
a63ca51f-99e2-4479-abb8-3e1f48c385e8, hasMaterialCategory: Paper,
hasMaterialDescription: Uncoated Cover, hasMaterialThicknessOrWeight: 100,
hasMaterialType: Paper, hasMaterialUnitOfMeasure: Pounds (lbs),
hasNumberOfVersions: 1, hasPaperType: Cover, hasPrice: 302.6 USD,
hasPrintedSides: Double sided, hasProofType: PDF digital proof,
hasQuantity: 1200, hasRecycledContentBeenOffered: N/A, hasSendToDetails:
[email protected], hasSupplierName: United Printing
and Mail - HHG Strategic Partner (United Printing and Mail - 48084 -
HHGSP - US Only), hasTotalColours: 4, hasTotalColoursFace: 4,
hasUnitOfMeasure: Inches (in),
- text: >-
hasAdditionalInformation: US-89839_AIRSUPRA HCP Discover Leave behind Qt
150,000 8.5”x11” flat/finished 80# Chorus Art Coated Cover 6/0 (CMYK +
2PMS) + Satin AQ S/W in 25s, hasColourDetails: 6/0 (CMYK + 2PMS) + Satin
AQ, hasCreatedDate: 2024-07-11, hasCustomerHomeCountry: United States,
hasCustomerID: 31753, hasCustomerName: AstraZeneca Pharmaceuticals
LP(AstraZeneca - US - BBU), hasCutting: Trim to size, hasElementID:
3394425, hasElementTitle: US-89839_AIRSUPRA HCP Discover Leave behind,
hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight:
11, hasFlatSizeWidth: 8.5, hasFscPaperBeenSpecified: Yes, hasInternalID:
91a64b08-cb2a-4d8e-b11d-b3908f11f2cd, hasMachineFinishing: Yes,
hasMachineFinishingDetails: S/W in 25s, hasMaterialCategory: Paper,
hasMaterialDescription: 80# Chorus Art Coated Cover,
hasMaterialRecycledPercentage: 30%, hasMaterialThicknessOrWeight: 80,
hasMaterialType: Paper and board, hasMaterialUnitOfMeasure: Pounds (lbs),
hasNumberOfVersions: 1, hasPackingRequirements: S/W in 25s, hasPaperType:
Cover, hasPrice: 13847.67 USD, hasPrintedSides: Single sided,
hasProductCategory: Loose Print, hasProofType: PDF digital proof,Colour
contract proof, hasQuantity: 150000, hasQuantityPerVersion: 150000,
hasRecycledContentBeenOffered: Yes, hasSupplierName: Phoenix Lithographing
Corporation(Phoenix Lithographing Corp - HHGSP - PI), hasTotalColours: 6,
hasUnitOfMeasure: Inches (in),
- text: >-
hasAdditionalInformation: US-82104_AIRSUPRA HCP Clinical Leave Behind Qt
650,000 (4pg Bi-fold) 17"x11" flat 8.5"x11" finished 80# Coated Cover 6/6
(CMYK + 2PMS) + GLOSS AQ Trim / Score / Bi-Fold S/W in 25s,
hasArtworkDoubleSidedStatus: Double Sided Different, hasColourDetails: 6/6
(CMYK + 2PMS) + GLOSS AQ, hasCreatedDate: 2024-01-18,
hasCustomerHomeCountry: United States, hasCustomerID: 31753,
hasCustomerName: AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU),
hasCutting: Trim to size, hasElementID: 3071417, hasElementTitle:
US-82104_AIRSUPRA HCP Clinical Leave Behind, hasFinishedSizeHeight: 11,
hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth: 17,
hasFscPaperBeenSpecified: Yes, hasInternalID:
a8e77a84-d6af-4478-b83a-a54ea515b6f0, hasMachineFinishing: Yes,
hasMachineFinishingDetails: Trim / Score / Bi-Fold S/W in 25s,
hasMaterialCategory: Paper, hasMaterialDescription: 80# Coated Cover,
hasMaterialRecycledPercentage: 0%, hasMaterialThicknessOrWeight: 80,
hasMaterialType: Paper and board, hasMaterialUnitOfMeasure: Pounds (lbs),
hasNumberOfVersions: 1, hasPackingRequirements: S/W in 25s, hasPaperType:
Cover, hasPrice: 118754 USD, hasPrintedSides: Double sided,
hasProductCategory: Booklets & Brochures, hasProofType: Colour contract
proof,PDF digital proof, hasQuantity: 650000, hasQuantityPerVersion:
650000, hasRecycledContentBeenOffered: Yes, hasSupplierName: Graphic Arts
Incorporated(Graphic Arts Inc - 56170 - HHGSP), hasTotalColours: 6,
hasUnitOfMeasure: Inches (in),
- text: >-
hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States,
hasCustomerID: 14458, hasCustomerName: Lowe's Companies Inc(Lowe's FVS),
hasCutting: Trim to size, hasElementID: 3044623, hasElementTitle: G284515
Commodity Moulding Profile Card 110911, hasFinishedSizeHeight: 6.875,
hasFinishedSizeWidth: 3, hasFlatSizeHeight: 6.875, hasFlatSizeWidth: 3,
hasFscPaperBeenSpecified: No, hasInternalID:
c88f6dd9-5470-4870-a971-6d88eafb768d, hasMaterialCategory: Other,
hasMaterialDescription: 8PT _C1S Cover, hasMaterialType: Other,
hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided,
hasProofType: PDF digital proof, hasQuantity: 1,
hasRecycledContentBeenOffered: N/A, hasSupplierName: HH IC Content
Production + Development(HH IC Content Production + Development),
hasTotalColours: 4, hasUnitOfMeasure: Inches (in),
metrics:
- f1_micro
- f1_macro
- f1_weighted
- precision
- accuracy
- recall
pipeline_tag: text-classification
library_name: setfit
inference: false
model-index:
- name: SetFit
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Northell/ros-classifiers-materials-flat
type: unknown
split: test
metrics:
- type: f1_micro
value: 0.4888472352389878
name: F1_Micro
- type: f1_macro
value: 0.07490145637740193
name: F1_Macro
- type: f1_weighted
value: 0.45529275569713784
name: F1_Weighted
- type: precision
value: 0.8907103538513184
name: Precision
- type: accuracy
value: 0.9836170077323914
name: Accuracy
- type: recall
value: 0.33686384558677673
name: Recall
SetFit
This is a SetFit model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 43 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | F1_Micro | F1_Macro | F1_Weighted | Precision | Accuracy | Recall |
---|---|---|---|---|---|---|
all | 0.4888 | 0.0749 | 0.4553 | 0.8907 | 0.9836 | 0.3369 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID: 14458, hasCustomerName: Lowe's Companies Inc(Lowe's FVS), hasCutting: Trim to size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight: 6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d, hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType: Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided, hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production + Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), ")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 61 | 109.9881 | 766 |
Framework Versions
- Python: 3.10.16
- SetFit: 1.1.1
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}