Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +252 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +48 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: 'hasAdditionalInformation: TFP10-73Pepsi Max X 264 TFP10-174 BAT Velo X 353,
|
9 |
+
hasColourDetails: 1pp - Face Print, hasCreatedDate: 2024-06-12, hasCustomerHomeCountry:
|
10 |
+
United Kingdom, hasCustomerID: 25892, hasCustomerName: Co-operative Group Limited.(Co-operative
|
11 |
+
Group Limited (Co-op Food)), hasCutting: Cut to shape, hasElementID: 3343462,
|
12 |
+
hasElementTitle: POS028 SECURITY SHROUD, hasFinishedSizeHeight: 1540, hasFinishedSizeWidth:
|
13 |
+
600, hasFlatSizeHeight: 3080, hasFlatSizeWidth: 600, hasFscPaperBeenSpecified:
|
14 |
+
No, hasInternalID: 354d490a-f709-4034-af56-3e0b28ee34ba, hasMachineFinishing:
|
15 |
+
Yes, hasMachineFinishingDetails: Trimmed to Size, Fold in Half, Weld Long Edges
|
16 |
+
Only with 2 x PP Eyelets Positioned as Template - Fold Twice (to 600x515 approx)
|
17 |
+
for Flat Packing Pack in 2''s, hasMaterialCategory: Plastic, hasMaterialDescription:
|
18 |
+
180gsm White/White Woven PE, hasMaterialThicknessOrWeight: 180, hasMaterialType:
|
19 |
+
Polypropylene, hasMaterialUnitOfMeasure: GSM, hasNumberOfVersions: 2, hasPackingRequirements:
|
20 |
+
Delivery to K Displays, Smith Way Ossett, FAO Dean Newbold. Delivery required
|
21 |
+
Friday 21st June. Please book in 48hrs in advance and mark all pallets on boxes
|
22 |
+
with code, qty and P10 2024 Co-op Campaign, hasPrice: 3513.22 GBP, hasPrintedSides:
|
23 |
+
Single sided, hasProofType: PDF digital proof, hasQuantity: 617, hasRecycledContentBeenOffered:
|
24 |
+
No, hasSupplierName: Dominion Print Limited(Dominion Print Limited), hasTotalColours:
|
25 |
+
4, hasUnitOfMeasure: Millimetres (mm), '
|
26 |
+
- text: 'hasAdditionalInformation: Mailed First Class, hasArtworkDoubleSidedStatus:
|
27 |
+
Double Sided Different, hasCreatedDate: 2024-03-21, hasCustomerHomeCountry: United
|
28 |
+
States, hasCustomerID: 32065, hasCustomerName: Republic Services, Inc(Republic
|
29 |
+
Services), hasCutting: Trim to size, hasElementID: 3192439, hasElementTitle: Crockett
|
30 |
+
Residental PC Mailer 2024, hasFinishedSizeHeight: 4, hasFinishedSizeWidth: 6,
|
31 |
+
hasFscPaperBeenSpecified: No, hasInternalID: a63ca51f-99e2-4479-abb8-3e1f48c385e8,
|
32 |
+
hasMaterialCategory: Paper, hasMaterialDescription: Uncoated Cover, hasMaterialThicknessOrWeight:
|
33 |
+
100, hasMaterialType: Paper, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions:
|
34 |
+
1, hasPaperType: Cover, hasPrice: 302.6 USD, hasPrintedSides: Double sided, hasProofType:
|
35 |
+
PDF digital proof, hasQuantity: 1200, hasRecycledContentBeenOffered: N/A, hasSendToDetails:
|
36 |
+
[email protected], hasSupplierName: United Printing and Mail
|
37 |
+
- HHG Strategic Partner (United Printing and Mail - 48084 - HHGSP - US Only),
|
38 |
+
hasTotalColours: 4, hasTotalColoursFace: 4, hasUnitOfMeasure: Inches (in), '
|
39 |
+
- text: 'hasAdditionalInformation: US-89839_AIRSUPRA HCP Discover Leave behind Qt
|
40 |
+
150,000 8.5”x11” flat/finished 80# Chorus Art Coated Cover 6/0 (CMYK + 2PMS) +
|
41 |
+
Satin AQ S/W in 25s, hasColourDetails: 6/0 (CMYK + 2PMS) + Satin AQ, hasCreatedDate:
|
42 |
+
2024-07-11, hasCustomerHomeCountry: United States, hasCustomerID: 31753, hasCustomerName:
|
43 |
+
AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU), hasCutting: Trim to size,
|
44 |
+
hasElementID: 3394425, hasElementTitle: US-89839_AIRSUPRA HCP Discover Leave behind,
|
45 |
+
hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth:
|
46 |
+
8.5, hasFscPaperBeenSpecified: Yes, hasInternalID: 91a64b08-cb2a-4d8e-b11d-b3908f11f2cd,
|
47 |
+
hasMachineFinishing: Yes, hasMachineFinishingDetails: S/W in 25s, hasMaterialCategory:
|
48 |
+
Paper, hasMaterialDescription: 80# Chorus Art Coated Cover, hasMaterialRecycledPercentage:
|
49 |
+
30%, hasMaterialThicknessOrWeight: 80, hasMaterialType: Paper and board, hasMaterialUnitOfMeasure:
|
50 |
+
Pounds (lbs), hasNumberOfVersions: 1, hasPackingRequirements: S/W in 25s, hasPaperType:
|
51 |
+
Cover, hasPrice: 13847.67 USD, hasPrintedSides: Single sided, hasProductCategory:
|
52 |
+
Loose Print, hasProofType: PDF digital proof,Colour contract proof, hasQuantity:
|
53 |
+
150000, hasQuantityPerVersion: 150000, hasRecycledContentBeenOffered: Yes, hasSupplierName:
|
54 |
+
Phoenix Lithographing Corporation(Phoenix Lithographing Corp - HHGSP - PI), hasTotalColours:
|
55 |
+
6, hasUnitOfMeasure: Inches (in), '
|
56 |
+
- text: 'hasAdditionalInformation: US-82104_AIRSUPRA HCP Clinical Leave Behind Qt
|
57 |
+
650,000 (4pg Bi-fold) 17"x11" flat 8.5"x11" finished 80# Coated Cover 6/6 (CMYK
|
58 |
+
+ 2PMS) + GLOSS AQ Trim / Score / Bi-Fold S/W in 25s, hasArtworkDoubleSidedStatus:
|
59 |
+
Double Sided Different, hasColourDetails: 6/6 (CMYK + 2PMS) + GLOSS AQ, hasCreatedDate:
|
60 |
+
2024-01-18, hasCustomerHomeCountry: United States, hasCustomerID: 31753, hasCustomerName:
|
61 |
+
AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU), hasCutting: Trim to size,
|
62 |
+
hasElementID: 3071417, hasElementTitle: US-82104_AIRSUPRA HCP Clinical Leave Behind,
|
63 |
+
hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth:
|
64 |
+
17, hasFscPaperBeenSpecified: Yes, hasInternalID: a8e77a84-d6af-4478-b83a-a54ea515b6f0,
|
65 |
+
hasMachineFinishing: Yes, hasMachineFinishingDetails: Trim / Score / Bi-Fold S/W
|
66 |
+
in 25s, hasMaterialCategory: Paper, hasMaterialDescription: 80# Coated Cover,
|
67 |
+
hasMaterialRecycledPercentage: 0%, hasMaterialThicknessOrWeight: 80, hasMaterialType:
|
68 |
+
Paper and board, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions:
|
69 |
+
1, hasPackingRequirements: S/W in 25s, hasPaperType: Cover, hasPrice: 118754 USD,
|
70 |
+
hasPrintedSides: Double sided, hasProductCategory: Booklets & Brochures, hasProofType:
|
71 |
+
Colour contract proof,PDF digital proof, hasQuantity: 650000, hasQuantityPerVersion:
|
72 |
+
650000, hasRecycledContentBeenOffered: Yes, hasSupplierName: Graphic Arts Incorporated(Graphic
|
73 |
+
Arts Inc - 56170 - HHGSP), hasTotalColours: 6, hasUnitOfMeasure: Inches (in), '
|
74 |
+
- text: 'hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID:
|
75 |
+
14458, hasCustomerName: Lowe''s Companies Inc(Lowe''s FVS), hasCutting: Trim to
|
76 |
+
size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile
|
77 |
+
Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight:
|
78 |
+
6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d,
|
79 |
+
hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType:
|
80 |
+
Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided,
|
81 |
+
hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered:
|
82 |
+
N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production
|
83 |
+
+ Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), '
|
84 |
+
metrics:
|
85 |
+
- f1_micro
|
86 |
+
- f1_macro
|
87 |
+
- f1_weighted
|
88 |
+
- precision
|
89 |
+
- accuracy
|
90 |
+
- recall
|
91 |
+
pipeline_tag: text-classification
|
92 |
+
library_name: setfit
|
93 |
+
inference: false
|
94 |
+
model-index:
|
95 |
+
- name: SetFit
|
96 |
+
results:
|
97 |
+
- task:
|
98 |
+
type: text-classification
|
99 |
+
name: Text Classification
|
100 |
+
dataset:
|
101 |
+
name: Northell/ros-classifiers-materials-flat
|
102 |
+
type: unknown
|
103 |
+
split: test
|
104 |
+
metrics:
|
105 |
+
- type: f1_micro
|
106 |
+
value: 0.4888472352389878
|
107 |
+
name: F1_Micro
|
108 |
+
- type: f1_macro
|
109 |
+
value: 0.07490145637740193
|
110 |
+
name: F1_Macro
|
111 |
+
- type: f1_weighted
|
112 |
+
value: 0.45529275569713784
|
113 |
+
name: F1_Weighted
|
114 |
+
- type: precision
|
115 |
+
value: 0.8907103538513184
|
116 |
+
name: Precision
|
117 |
+
- type: accuracy
|
118 |
+
value: 0.9836170077323914
|
119 |
+
name: Accuracy
|
120 |
+
- type: recall
|
121 |
+
value: 0.33686384558677673
|
122 |
+
name: Recall
|
123 |
+
---
|
124 |
+
|
125 |
+
# SetFit
|
126 |
+
|
127 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
|
128 |
+
|
129 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
130 |
+
|
131 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
132 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
133 |
+
|
134 |
+
## Model Details
|
135 |
+
|
136 |
+
### Model Description
|
137 |
+
- **Model Type:** SetFit
|
138 |
+
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
139 |
+
- **Classification head:** a OneVsRestClassifier instance
|
140 |
+
- **Maximum Sequence Length:** 512 tokens
|
141 |
+
- **Number of Classes:** 43 classes
|
142 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
143 |
+
<!-- - **Language:** Unknown -->
|
144 |
+
<!-- - **License:** Unknown -->
|
145 |
+
|
146 |
+
### Model Sources
|
147 |
+
|
148 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
149 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
150 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
151 |
+
|
152 |
+
## Evaluation
|
153 |
+
|
154 |
+
### Metrics
|
155 |
+
| Label | F1_Micro | F1_Macro | F1_Weighted | Precision | Accuracy | Recall |
|
156 |
+
|:--------|:---------|:---------|:------------|:----------|:---------|:-------|
|
157 |
+
| **all** | 0.4888 | 0.0749 | 0.4553 | 0.8907 | 0.9836 | 0.3369 |
|
158 |
+
|
159 |
+
## Uses
|
160 |
+
|
161 |
+
### Direct Use for Inference
|
162 |
+
|
163 |
+
First install the SetFit library:
|
164 |
+
|
165 |
+
```bash
|
166 |
+
pip install setfit
|
167 |
+
```
|
168 |
+
|
169 |
+
Then you can load this model and run inference.
|
170 |
+
|
171 |
+
```python
|
172 |
+
from setfit import SetFitModel
|
173 |
+
|
174 |
+
# Download from the 🤗 Hub
|
175 |
+
model = SetFitModel.from_pretrained("setfit_model_id")
|
176 |
+
# Run inference
|
177 |
+
preds = model("hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID: 14458, hasCustomerName: Lowe's Companies Inc(Lowe's FVS), hasCutting: Trim to size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight: 6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d, hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType: Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided, hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production + Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), ")
|
178 |
+
```
|
179 |
+
|
180 |
+
<!--
|
181 |
+
### Downstream Use
|
182 |
+
|
183 |
+
*List how someone could finetune this model on their own dataset.*
|
184 |
+
-->
|
185 |
+
|
186 |
+
<!--
|
187 |
+
### Out-of-Scope Use
|
188 |
+
|
189 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
190 |
+
-->
|
191 |
+
|
192 |
+
<!--
|
193 |
+
## Bias, Risks and Limitations
|
194 |
+
|
195 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
196 |
+
-->
|
197 |
+
|
198 |
+
<!--
|
199 |
+
### Recommendations
|
200 |
+
|
201 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
202 |
+
-->
|
203 |
+
|
204 |
+
## Training Details
|
205 |
+
|
206 |
+
### Training Set Metrics
|
207 |
+
| Training set | Min | Median | Max |
|
208 |
+
|:-------------|:----|:---------|:----|
|
209 |
+
| Word count | 61 | 109.9881 | 766 |
|
210 |
+
|
211 |
+
### Framework Versions
|
212 |
+
- Python: 3.10.16
|
213 |
+
- SetFit: 1.1.1
|
214 |
+
- Sentence Transformers: 3.4.1
|
215 |
+
- Transformers: 4.49.0
|
216 |
+
- PyTorch: 2.6.0+cu124
|
217 |
+
- Datasets: 3.2.0
|
218 |
+
- Tokenizers: 0.21.0
|
219 |
+
|
220 |
+
## Citation
|
221 |
+
|
222 |
+
### BibTeX
|
223 |
+
```bibtex
|
224 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
225 |
+
doi = {10.48550/ARXIV.2209.11055},
|
226 |
+
url = {https://arxiv.org/abs/2209.11055},
|
227 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
228 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
229 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
230 |
+
publisher = {arXiv},
|
231 |
+
year = {2022},
|
232 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
233 |
+
}
|
234 |
+
```
|
235 |
+
|
236 |
+
<!--
|
237 |
+
## Glossary
|
238 |
+
|
239 |
+
*Clearly define terms in order to be accessible across audiences.*
|
240 |
+
-->
|
241 |
+
|
242 |
+
<!--
|
243 |
+
## Model Card Authors
|
244 |
+
|
245 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
246 |
+
-->
|
247 |
+
|
248 |
+
<!--
|
249 |
+
## Model Card Contact
|
250 |
+
|
251 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
252 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "avsolatorio/GIST-small-Embedding-v0",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.49.0",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"https://www.northell.com/taxonomies/MaterialTypes/TextilesCategory",
|
4 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Artboard",
|
5 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Leather",
|
6 |
+
"https://www.northell.com/taxonomies/MaterialTypes/FabricCategory",
|
7 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Softwood",
|
8 |
+
"https://www.northell.com/taxonomies/MaterialTypes/PVC",
|
9 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Hardwood",
|
10 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Nylon",
|
11 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Particleboard",
|
12 |
+
"https://www.northell.com/taxonomies/MaterialTypes/PLABioplastic",
|
13 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Paper",
|
14 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polyurethane",
|
15 |
+
"https://www.northell.com/taxonomies/MaterialTypes/FoamBoard",
|
16 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Medium-densityfibreboardMDF",
|
17 |
+
"https://www.northell.com/taxonomies/MaterialTypes/PlasticCategory",
|
18 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Bamboo",
|
19 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Aluminium",
|
20 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Tinplate",
|
21 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Displayboard",
|
22 |
+
"https://www.northell.com/taxonomies/MaterialTypes/LDPE",
|
23 |
+
"https://www.northell.com/taxonomies/MaterialTypes/MetalsCategory",
|
24 |
+
"https://www.northell.com/taxonomies/MaterialTypes/MaterialTypeScheme",
|
25 |
+
"https://www.northell.com/taxonomies/MaterialTypes/ABS",
|
26 |
+
"https://www.northell.com/taxonomies/MaterialTypes/PaperCategory",
|
27 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Corrugated",
|
28 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Paperandboard",
|
29 |
+
"https://www.northell.com/taxonomies/MaterialTypes/WoodCategory",
|
30 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Steel",
|
31 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polystyrol",
|
32 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Acrylics",
|
33 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polypropylene",
|
34 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polystyrene",
|
35 |
+
"https://www.northell.com/taxonomies/MaterialTypes/HDPE",
|
36 |
+
"https://www.northell.com/taxonomies/MaterialTypes/PET",
|
37 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polycarbonate",
|
38 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Wool",
|
39 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Cotton",
|
40 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polyester",
|
41 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Fabric",
|
42 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Iron",
|
43 |
+
"https://www.northell.com/taxonomies/MaterialTypes/OtherCategory",
|
44 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Other",
|
45 |
+
"https://www.northell.com/taxonomies/MaterialTypes/AcrylicsPolymethylmethacrylate"
|
46 |
+
],
|
47 |
+
"normalize_embeddings": false
|
48 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efa751a822b7eb0a7db5d0167b6e38ffd6ad1978e71de205d7c0efedcc18bf2a
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4e093ed8471559d53424417b7ce370af389102c3d2e5d6eff0d6ba2df9212cb
|
3 |
+
size 104996
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|