stan-northell commited on
Commit
5e32075
·
verified ·
1 Parent(s): 36a8c3d

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 'hasAdditionalInformation: TFP10-73Pepsi Max X 264 TFP10-174 BAT Velo X 353,
9
+ hasColourDetails: 1pp - Face Print, hasCreatedDate: 2024-06-12, hasCustomerHomeCountry:
10
+ United Kingdom, hasCustomerID: 25892, hasCustomerName: Co-operative Group Limited.(Co-operative
11
+ Group Limited (Co-op Food)), hasCutting: Cut to shape, hasElementID: 3343462,
12
+ hasElementTitle: POS028 SECURITY SHROUD, hasFinishedSizeHeight: 1540, hasFinishedSizeWidth:
13
+ 600, hasFlatSizeHeight: 3080, hasFlatSizeWidth: 600, hasFscPaperBeenSpecified:
14
+ No, hasInternalID: 354d490a-f709-4034-af56-3e0b28ee34ba, hasMachineFinishing:
15
+ Yes, hasMachineFinishingDetails: Trimmed to Size, Fold in Half, Weld Long Edges
16
+ Only with 2 x PP Eyelets Positioned as Template - Fold Twice (to 600x515 approx)
17
+ for Flat Packing Pack in 2''s, hasMaterialCategory: Plastic, hasMaterialDescription:
18
+ 180gsm White/White Woven PE, hasMaterialThicknessOrWeight: 180, hasMaterialType:
19
+ Polypropylene, hasMaterialUnitOfMeasure: GSM, hasNumberOfVersions: 2, hasPackingRequirements:
20
+ Delivery to K Displays, Smith Way Ossett, FAO Dean Newbold. Delivery required
21
+ Friday 21st June. Please book in 48hrs in advance and mark all pallets on boxes
22
+ with code, qty and P10 2024 Co-op Campaign, hasPrice: 3513.22 GBP, hasPrintedSides:
23
+ Single sided, hasProofType: PDF digital proof, hasQuantity: 617, hasRecycledContentBeenOffered:
24
+ No, hasSupplierName: Dominion Print Limited(Dominion Print Limited), hasTotalColours:
25
+ 4, hasUnitOfMeasure: Millimetres (mm), '
26
+ - text: 'hasAdditionalInformation: Mailed First Class, hasArtworkDoubleSidedStatus:
27
+ Double Sided Different, hasCreatedDate: 2024-03-21, hasCustomerHomeCountry: United
28
+ States, hasCustomerID: 32065, hasCustomerName: Republic Services, Inc(Republic
29
+ Services), hasCutting: Trim to size, hasElementID: 3192439, hasElementTitle: Crockett
30
+ Residental PC Mailer 2024, hasFinishedSizeHeight: 4, hasFinishedSizeWidth: 6,
31
+ hasFscPaperBeenSpecified: No, hasInternalID: a63ca51f-99e2-4479-abb8-3e1f48c385e8,
32
+ hasMaterialCategory: Paper, hasMaterialDescription: Uncoated Cover, hasMaterialThicknessOrWeight:
33
+ 100, hasMaterialType: Paper, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions:
34
+ 1, hasPaperType: Cover, hasPrice: 302.6 USD, hasPrintedSides: Double sided, hasProofType:
35
+ PDF digital proof, hasQuantity: 1200, hasRecycledContentBeenOffered: N/A, hasSendToDetails:
36
+ [email protected], hasSupplierName: United Printing and Mail
37
+ - HHG Strategic Partner (United Printing and Mail - 48084 - HHGSP - US Only),
38
+ hasTotalColours: 4, hasTotalColoursFace: 4, hasUnitOfMeasure: Inches (in), '
39
+ - text: 'hasAdditionalInformation: US-89839_AIRSUPRA HCP Discover Leave behind Qt
40
+ 150,000 8.5”x11” flat/finished 80# Chorus Art Coated Cover 6/0 (CMYK + 2PMS) +
41
+ Satin AQ S/W in 25s, hasColourDetails: 6/0 (CMYK + 2PMS) + Satin AQ, hasCreatedDate:
42
+ 2024-07-11, hasCustomerHomeCountry: United States, hasCustomerID: 31753, hasCustomerName:
43
+ AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU), hasCutting: Trim to size,
44
+ hasElementID: 3394425, hasElementTitle: US-89839_AIRSUPRA HCP Discover Leave behind,
45
+ hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth:
46
+ 8.5, hasFscPaperBeenSpecified: Yes, hasInternalID: 91a64b08-cb2a-4d8e-b11d-b3908f11f2cd,
47
+ hasMachineFinishing: Yes, hasMachineFinishingDetails: S/W in 25s, hasMaterialCategory:
48
+ Paper, hasMaterialDescription: 80# Chorus Art Coated Cover, hasMaterialRecycledPercentage:
49
+ 30%, hasMaterialThicknessOrWeight: 80, hasMaterialType: Paper and board, hasMaterialUnitOfMeasure:
50
+ Pounds (lbs), hasNumberOfVersions: 1, hasPackingRequirements: S/W in 25s, hasPaperType:
51
+ Cover, hasPrice: 13847.67 USD, hasPrintedSides: Single sided, hasProductCategory:
52
+ Loose Print, hasProofType: PDF digital proof,Colour contract proof, hasQuantity:
53
+ 150000, hasQuantityPerVersion: 150000, hasRecycledContentBeenOffered: Yes, hasSupplierName:
54
+ Phoenix Lithographing Corporation(Phoenix Lithographing Corp - HHGSP - PI), hasTotalColours:
55
+ 6, hasUnitOfMeasure: Inches (in), '
56
+ - text: 'hasAdditionalInformation: US-82104_AIRSUPRA HCP Clinical Leave Behind Qt
57
+ 650,000 (4pg Bi-fold) 17"x11" flat 8.5"x11" finished 80# Coated Cover 6/6 (CMYK
58
+ + 2PMS) + GLOSS AQ Trim / Score / Bi-Fold S/W in 25s, hasArtworkDoubleSidedStatus:
59
+ Double Sided Different, hasColourDetails: 6/6 (CMYK + 2PMS) + GLOSS AQ, hasCreatedDate:
60
+ 2024-01-18, hasCustomerHomeCountry: United States, hasCustomerID: 31753, hasCustomerName:
61
+ AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU), hasCutting: Trim to size,
62
+ hasElementID: 3071417, hasElementTitle: US-82104_AIRSUPRA HCP Clinical Leave Behind,
63
+ hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth:
64
+ 17, hasFscPaperBeenSpecified: Yes, hasInternalID: a8e77a84-d6af-4478-b83a-a54ea515b6f0,
65
+ hasMachineFinishing: Yes, hasMachineFinishingDetails: Trim / Score / Bi-Fold S/W
66
+ in 25s, hasMaterialCategory: Paper, hasMaterialDescription: 80# Coated Cover,
67
+ hasMaterialRecycledPercentage: 0%, hasMaterialThicknessOrWeight: 80, hasMaterialType:
68
+ Paper and board, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions:
69
+ 1, hasPackingRequirements: S/W in 25s, hasPaperType: Cover, hasPrice: 118754 USD,
70
+ hasPrintedSides: Double sided, hasProductCategory: Booklets & Brochures, hasProofType:
71
+ Colour contract proof,PDF digital proof, hasQuantity: 650000, hasQuantityPerVersion:
72
+ 650000, hasRecycledContentBeenOffered: Yes, hasSupplierName: Graphic Arts Incorporated(Graphic
73
+ Arts Inc - 56170 - HHGSP), hasTotalColours: 6, hasUnitOfMeasure: Inches (in), '
74
+ - text: 'hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID:
75
+ 14458, hasCustomerName: Lowe''s Companies Inc(Lowe''s FVS), hasCutting: Trim to
76
+ size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile
77
+ Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight:
78
+ 6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d,
79
+ hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType:
80
+ Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided,
81
+ hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered:
82
+ N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production
83
+ + Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), '
84
+ metrics:
85
+ - f1_micro
86
+ - f1_macro
87
+ - f1_weighted
88
+ - precision
89
+ - accuracy
90
+ - recall
91
+ pipeline_tag: text-classification
92
+ library_name: setfit
93
+ inference: false
94
+ model-index:
95
+ - name: SetFit
96
+ results:
97
+ - task:
98
+ type: text-classification
99
+ name: Text Classification
100
+ dataset:
101
+ name: Northell/ros-classifiers-materials-flat
102
+ type: unknown
103
+ split: test
104
+ metrics:
105
+ - type: f1_micro
106
+ value: 0.4888472352389878
107
+ name: F1_Micro
108
+ - type: f1_macro
109
+ value: 0.07490145637740193
110
+ name: F1_Macro
111
+ - type: f1_weighted
112
+ value: 0.45529275569713784
113
+ name: F1_Weighted
114
+ - type: precision
115
+ value: 0.8907103538513184
116
+ name: Precision
117
+ - type: accuracy
118
+ value: 0.9836170077323914
119
+ name: Accuracy
120
+ - type: recall
121
+ value: 0.33686384558677673
122
+ name: Recall
123
+ ---
124
+
125
+ # SetFit
126
+
127
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
128
+
129
+ The model has been trained using an efficient few-shot learning technique that involves:
130
+
131
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
132
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
133
+
134
+ ## Model Details
135
+
136
+ ### Model Description
137
+ - **Model Type:** SetFit
138
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
139
+ - **Classification head:** a OneVsRestClassifier instance
140
+ - **Maximum Sequence Length:** 512 tokens
141
+ - **Number of Classes:** 43 classes
142
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
143
+ <!-- - **Language:** Unknown -->
144
+ <!-- - **License:** Unknown -->
145
+
146
+ ### Model Sources
147
+
148
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
149
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
150
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
151
+
152
+ ## Evaluation
153
+
154
+ ### Metrics
155
+ | Label | F1_Micro | F1_Macro | F1_Weighted | Precision | Accuracy | Recall |
156
+ |:--------|:---------|:---------|:------------|:----------|:---------|:-------|
157
+ | **all** | 0.4888 | 0.0749 | 0.4553 | 0.8907 | 0.9836 | 0.3369 |
158
+
159
+ ## Uses
160
+
161
+ ### Direct Use for Inference
162
+
163
+ First install the SetFit library:
164
+
165
+ ```bash
166
+ pip install setfit
167
+ ```
168
+
169
+ Then you can load this model and run inference.
170
+
171
+ ```python
172
+ from setfit import SetFitModel
173
+
174
+ # Download from the 🤗 Hub
175
+ model = SetFitModel.from_pretrained("setfit_model_id")
176
+ # Run inference
177
+ preds = model("hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID: 14458, hasCustomerName: Lowe's Companies Inc(Lowe's FVS), hasCutting: Trim to size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight: 6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d, hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType: Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided, hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production + Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), ")
178
+ ```
179
+
180
+ <!--
181
+ ### Downstream Use
182
+
183
+ *List how someone could finetune this model on their own dataset.*
184
+ -->
185
+
186
+ <!--
187
+ ### Out-of-Scope Use
188
+
189
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
190
+ -->
191
+
192
+ <!--
193
+ ## Bias, Risks and Limitations
194
+
195
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
196
+ -->
197
+
198
+ <!--
199
+ ### Recommendations
200
+
201
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
202
+ -->
203
+
204
+ ## Training Details
205
+
206
+ ### Training Set Metrics
207
+ | Training set | Min | Median | Max |
208
+ |:-------------|:----|:---------|:----|
209
+ | Word count | 61 | 109.9881 | 766 |
210
+
211
+ ### Framework Versions
212
+ - Python: 3.10.16
213
+ - SetFit: 1.1.1
214
+ - Sentence Transformers: 3.4.1
215
+ - Transformers: 4.49.0
216
+ - PyTorch: 2.6.0+cu124
217
+ - Datasets: 3.2.0
218
+ - Tokenizers: 0.21.0
219
+
220
+ ## Citation
221
+
222
+ ### BibTeX
223
+ ```bibtex
224
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
225
+ doi = {10.48550/ARXIV.2209.11055},
226
+ url = {https://arxiv.org/abs/2209.11055},
227
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
228
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
229
+ title = {Efficient Few-Shot Learning Without Prompts},
230
+ publisher = {arXiv},
231
+ year = {2022},
232
+ copyright = {Creative Commons Attribution 4.0 International}
233
+ }
234
+ ```
235
+
236
+ <!--
237
+ ## Glossary
238
+
239
+ *Clearly define terms in order to be accessible across audiences.*
240
+ -->
241
+
242
+ <!--
243
+ ## Model Card Authors
244
+
245
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
246
+ -->
247
+
248
+ <!--
249
+ ## Model Card Contact
250
+
251
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
252
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "avsolatorio/GIST-small-Embedding-v0",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.49.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "https://www.northell.com/taxonomies/MaterialTypes/TextilesCategory",
4
+ "https://www.northell.com/taxonomies/MaterialTypes/Artboard",
5
+ "https://www.northell.com/taxonomies/MaterialTypes/Leather",
6
+ "https://www.northell.com/taxonomies/MaterialTypes/FabricCategory",
7
+ "https://www.northell.com/taxonomies/MaterialTypes/Softwood",
8
+ "https://www.northell.com/taxonomies/MaterialTypes/PVC",
9
+ "https://www.northell.com/taxonomies/MaterialTypes/Hardwood",
10
+ "https://www.northell.com/taxonomies/MaterialTypes/Nylon",
11
+ "https://www.northell.com/taxonomies/MaterialTypes/Particleboard",
12
+ "https://www.northell.com/taxonomies/MaterialTypes/PLABioplastic",
13
+ "https://www.northell.com/taxonomies/MaterialTypes/Paper",
14
+ "https://www.northell.com/taxonomies/MaterialTypes/Polyurethane",
15
+ "https://www.northell.com/taxonomies/MaterialTypes/FoamBoard",
16
+ "https://www.northell.com/taxonomies/MaterialTypes/Medium-densityfibreboardMDF",
17
+ "https://www.northell.com/taxonomies/MaterialTypes/PlasticCategory",
18
+ "https://www.northell.com/taxonomies/MaterialTypes/Bamboo",
19
+ "https://www.northell.com/taxonomies/MaterialTypes/Aluminium",
20
+ "https://www.northell.com/taxonomies/MaterialTypes/Tinplate",
21
+ "https://www.northell.com/taxonomies/MaterialTypes/Displayboard",
22
+ "https://www.northell.com/taxonomies/MaterialTypes/LDPE",
23
+ "https://www.northell.com/taxonomies/MaterialTypes/MetalsCategory",
24
+ "https://www.northell.com/taxonomies/MaterialTypes/MaterialTypeScheme",
25
+ "https://www.northell.com/taxonomies/MaterialTypes/ABS",
26
+ "https://www.northell.com/taxonomies/MaterialTypes/PaperCategory",
27
+ "https://www.northell.com/taxonomies/MaterialTypes/Corrugated",
28
+ "https://www.northell.com/taxonomies/MaterialTypes/Paperandboard",
29
+ "https://www.northell.com/taxonomies/MaterialTypes/WoodCategory",
30
+ "https://www.northell.com/taxonomies/MaterialTypes/Steel",
31
+ "https://www.northell.com/taxonomies/MaterialTypes/Polystyrol",
32
+ "https://www.northell.com/taxonomies/MaterialTypes/Acrylics",
33
+ "https://www.northell.com/taxonomies/MaterialTypes/Polypropylene",
34
+ "https://www.northell.com/taxonomies/MaterialTypes/Polystyrene",
35
+ "https://www.northell.com/taxonomies/MaterialTypes/HDPE",
36
+ "https://www.northell.com/taxonomies/MaterialTypes/PET",
37
+ "https://www.northell.com/taxonomies/MaterialTypes/Polycarbonate",
38
+ "https://www.northell.com/taxonomies/MaterialTypes/Wool",
39
+ "https://www.northell.com/taxonomies/MaterialTypes/Cotton",
40
+ "https://www.northell.com/taxonomies/MaterialTypes/Polyester",
41
+ "https://www.northell.com/taxonomies/MaterialTypes/Fabric",
42
+ "https://www.northell.com/taxonomies/MaterialTypes/Iron",
43
+ "https://www.northell.com/taxonomies/MaterialTypes/OtherCategory",
44
+ "https://www.northell.com/taxonomies/MaterialTypes/Other",
45
+ "https://www.northell.com/taxonomies/MaterialTypes/AcrylicsPolymethylmethacrylate"
46
+ ],
47
+ "normalize_embeddings": false
48
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efa751a822b7eb0a7db5d0167b6e38ffd6ad1978e71de205d7c0efedcc18bf2a
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4e093ed8471559d53424417b7ce370af389102c3d2e5d6eff0d6ba2df9212cb
3
+ size 104996
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff