Melo1512's picture
End of training
a4f259d verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/vit-msn-small
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-msn-small-corect_cleaned_dataset_lateral_flow_ivalidation
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9230769230769231

vit-msn-small-corect_cleaned_dataset_lateral_flow_ivalidation

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2318
  • Accuracy: 0.9231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.6468 0.5604
No log 1.8462 6 0.4227 0.8462
No log 2.7692 9 0.3390 0.8608
0.5336 4.0 13 0.3115 0.8864
0.5336 4.9231 16 0.2986 0.8938
0.5336 5.8462 19 0.2318 0.9231
0.3565 6.7692 22 0.2767 0.9121
0.3565 8.0 26 0.2490 0.9084
0.3565 8.9231 29 0.3151 0.8938
0.3166 9.8462 32 0.2404 0.9231
0.3166 10.7692 35 0.2520 0.9158
0.3166 12.0 39 0.2515 0.9048
0.2657 12.9231 42 0.2344 0.9121
0.2657 13.8462 45 0.2187 0.9194
0.2657 14.7692 48 0.2289 0.9194
0.259 16.0 52 0.2251 0.9194
0.259 16.9231 55 0.2238 0.9231
0.259 17.8462 58 0.2312 0.9121
0.2514 18.4615 60 0.2305 0.9084

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1