vit-msn-small-corect_cleaned_dataset_lateral_flow_ivalidation

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2318
  • Accuracy: 0.9231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.6468 0.5604
No log 1.8462 6 0.4227 0.8462
No log 2.7692 9 0.3390 0.8608
0.5336 4.0 13 0.3115 0.8864
0.5336 4.9231 16 0.2986 0.8938
0.5336 5.8462 19 0.2318 0.9231
0.3565 6.7692 22 0.2767 0.9121
0.3565 8.0 26 0.2490 0.9084
0.3565 8.9231 29 0.3151 0.8938
0.3166 9.8462 32 0.2404 0.9231
0.3166 10.7692 35 0.2520 0.9158
0.3166 12.0 39 0.2515 0.9048
0.2657 12.9231 42 0.2344 0.9121
0.2657 13.8462 45 0.2187 0.9194
0.2657 14.7692 48 0.2289 0.9194
0.259 16.0 52 0.2251 0.9194
0.259 16.9231 55 0.2238 0.9231
0.259 17.8462 58 0.2312 0.9121
0.2514 18.4615 60 0.2305 0.9084

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
21.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Melo1512/vit-msn-small-corect_cleaned_dataset_lateral_flow_ivalidation

Finetuned
(26)
this model

Evaluation results