metadata
library_name: transformers
language:
- de
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large Turbo De - Krish Kalra
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: de
split: None
args: 'config: de, split: test'
metrics:
- name: Wer
type: wer
value: 8.286882199925678
Whisper Large Turbo De - Krish Kalra
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0916
- Wer: 8.2869
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0848 | 1.0 | 71 | 0.1814 | 12.4423 |
0.0465 | 2.0 | 142 | 0.1093 | 5.4150 |
0.0403 | 3.0 | 213 | 0.0916 | 8.2869 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3