--- library_name: transformers language: - de license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large Turbo De - Krish Kalra results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: de split: None args: 'config: de, split: test' metrics: - name: Wer type: wer value: 8.286882199925678 --- # Whisper Large Turbo De - Krish Kalra This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0916 - Wer: 8.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0848 | 1.0 | 71 | 0.1814 | 12.4423 | | 0.0465 | 2.0 | 142 | 0.1093 | 5.4150 | | 0.0403 | 3.0 | 213 | 0.0916 | 8.2869 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3