metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:46
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: >-
Medical science is the application of scientific principles to the study
and practice of medicine. It has transformed medicine by providing a
deeper understanding of the human body at the cellular and molecular
levels, allowing for more effective treatments and interventions. Medical
science has enabled us to develop new treatments, understand the causes of
diseases, and improve patient outcomes. It's had a profound impact on the
way medicine is practiced today.
sentences:
- >-
I was reading about health and wellness, and I came across the term
"quackery." What is quackery in the context of medicine?
- >-
That's really interesting. What is medical science, and how has it
impacted the practice of medicine?
- >-
That's helpful to know. What is the primary purpose of a physical
examination in medicine, anyway?
- source_sentence: >-
The purpose of differential diagnosis is to rule out conditions based on
the information provided, in order to narrow down the possible causes of a
patient's symptoms. By considering multiple potential diagnoses and
evaluating the likelihood of each, doctors can arrive at a more accurate
diagnosis and develop an effective treatment plan.
sentences:
- >-
I've heard the term "differential diagnosis" before. What is the purpose
of differential diagnosis?
- >-
Hello, I'm interested in learning about the various ways that diseases
can be treated. Can you tell me some common ways to treat disease?
- >-
I was just wondering about what happens during a typical doctor's visit.
What kinds of medical devices are typically used in basic diagnostic
procedures?
- source_sentence: >-
Typically, individual governments establish legal, credentialing, and
financing frameworks to support health care systems. These frameworks help
to structure the way health care is delivered and accessed within a
country.
sentences:
- >-
That makes sense. I'm also curious about the frameworks themselves. What
types of frameworks are typically established by individual governments
to support health care systems?
- I see. Where is contemporary medicine generally conducted?
- >-
That makes sense. I've been to the doctor's office a few times and I've
seen them use those devices. What is the role of physicians and
physician assistants in modern clinical practice?
- source_sentence: >-
The information gathered during a medical encounter is documented in the
medical record, which is a legal document in many jurisdictions. This
record contains all the relevant information about the patient's
condition, treatment, and medical history, and is used to guide future
care and treatment decisions.
sentences:
- >-
I see. I think I understand, but I'm a bit confused. Is there a more
general term for medical treatments that are used outside of scientific
medicine?
- >-
That makes sense. What types of medical information might you collect
from a patient's medical history?
- What happens to the information gathered during a medical encounter?
- source_sentence: >-
Regional differences in culture and technology are significant factors
that contribute to variations in medical availability and clinical
practice around the world. These factors can shape the way healthcare is
delivered, the types of treatments that are available, and even the way
patients interact with healthcare professionals. It's fascinating to learn
about these differences and how they impact healthcare outcomes.
sentences:
- >-
I see. I'm curious about the term "therapy" in the context of treating
disease. Can you explain what you understand by that term?
- >-
Hi, I'm learning about medical interviews, and I'm a bit confused about
the information that's gathered about a patient's occupation and
lifestyle. What information is typically gathered during the interview?
- >-
I see. I'm also interested in learning more about the variations in
medical availability and clinical practice around the world. What are
some factors that contribute to variations in medical availability and
clinical practice around the world?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT Embed base Legal Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8333333333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8333333333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8333333333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9384882922619097
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9166666666666666
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9166666666666666
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 1
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 1
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 1
name: Cosine Mrr@10
- type: cosine_map@100
value: 1
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 1
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 1
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 1
name: Cosine Mrr@10
- type: cosine_map@100
value: 1
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8333333333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8333333333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8333333333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9384882922619097
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9166666666666666
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9166666666666666
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 1
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 1
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 1
name: Cosine Mrr@10
- type: cosine_map@100
value: 1
name: Cosine Map@100
ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Jonuu/LawyerAI1")
# Run inference
sentences = [
"Regional differences in culture and technology are significant factors that contribute to variations in medical availability and clinical practice around the world. These factors can shape the way healthcare is delivered, the types of treatments that are available, and even the way patients interact with healthcare professionals. It's fascinating to learn about these differences and how they impact healthcare outcomes.",
"I see. I'm also interested in learning more about the variations in medical availability and clinical practice around the world. What are some factors that contribute to variations in medical availability and clinical practice around the world?",
"Hi, I'm learning about medical interviews, and I'm a bit confused about the information that's gathered about a patient's occupation and lifestyle. What information is typically gathered during the interview?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.8333 | 1.0 | 1.0 | 0.8333 | 1.0 |
cosine_accuracy@3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_accuracy@5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_accuracy@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_precision@1 | 0.8333 | 1.0 | 1.0 | 0.8333 | 1.0 |
cosine_precision@3 | 0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.3333 |
cosine_precision@5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
cosine_precision@10 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
cosine_recall@1 | 0.8333 | 1.0 | 1.0 | 0.8333 | 1.0 |
cosine_recall@3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_recall@5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_recall@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_ndcg@10 | 0.9385 | 1.0 | 1.0 | 0.9385 | 1.0 |
cosine_mrr@10 | 0.9167 | 1.0 | 1.0 | 0.9167 | 1.0 |
cosine_map@100 | 0.9167 | 1.0 | 1.0 | 0.9167 | 1.0 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 46 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 46 samples:
positive anchor type string string details - min: 37 tokens
- mean: 71.26 tokens
- max: 148 tokens
- min: 10 tokens
- mean: 29.57 tokens
- max: 47 tokens
- Samples:
positive anchor The characteristics of a health care system have a significant impact on the way medical care is provided. The structure, financing, and policies of a health care system can all influence the availability, accessibility, and quality of medical care.
That helps clarify things. How do the characteristics of a health care system impact the way medical care is provided?
Ancient philosophers and physicians applied treatments like bloodletting based on theoretical frameworks such as humorism, which attempted to explain the workings of the human body. These early theories were often influenced by cultural and philosophical beliefs, and they laid the groundwork for the development of modern medical science. It's interesting to see how our understanding of the human body has evolved over time, isn't it?
I'm curious about ancient philosophers and physicians. How did they approach medicine?
Quackery is an interesting topic. In the context of medicine, quackery refers to medical treatments that are used outside of scientific medicine, but have significant concerns related to ethics, safety, and efficacy. This means that these treatments are not necessarily supported by scientific evidence, and may even be harmful to patients.
I was reading about health and wellness, and I came across the term "quackery." What is quackery in the context of medicine?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|
1.0 | 1 | 0.9385 | 1.0 | 0.9385 | 0.9385 | 1.0 |
2.0 | 2 | 0.9385 | 1.0 | 1.0 | 0.9385 | 1.0 |
3.0 | 3 | 0.9385 | 1.0 | 1.0 | 0.9385 | 1.0 |
4.0 | 4 | 0.9385 | 1.0 | 1.0 | 0.9385 | 1.0 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu118
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}