Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +743 -0
- config.json +47 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +945 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,743 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:46
|
11 |
+
- loss:MatryoshkaLoss
|
12 |
+
- loss:MultipleNegativesRankingLoss
|
13 |
+
base_model: nomic-ai/modernbert-embed-base
|
14 |
+
widget:
|
15 |
+
- source_sentence: Medical science is the application of scientific principles to
|
16 |
+
the study and practice of medicine. It has transformed medicine by providing a
|
17 |
+
deeper understanding of the human body at the cellular and molecular levels, allowing
|
18 |
+
for more effective treatments and interventions. Medical science has enabled us
|
19 |
+
to develop new treatments, understand the causes of diseases, and improve patient
|
20 |
+
outcomes. It's had a profound impact on the way medicine is practiced today.
|
21 |
+
sentences:
|
22 |
+
- I was reading about health and wellness, and I came across the term "quackery."
|
23 |
+
What is quackery in the context of medicine?
|
24 |
+
- That's really interesting. What is medical science, and how has it impacted the
|
25 |
+
practice of medicine?
|
26 |
+
- That's helpful to know. What is the primary purpose of a physical examination
|
27 |
+
in medicine, anyway?
|
28 |
+
- source_sentence: The purpose of differential diagnosis is to rule out conditions
|
29 |
+
based on the information provided, in order to narrow down the possible causes
|
30 |
+
of a patient's symptoms. By considering multiple potential diagnoses and evaluating
|
31 |
+
the likelihood of each, doctors can arrive at a more accurate diagnosis and develop
|
32 |
+
an effective treatment plan.
|
33 |
+
sentences:
|
34 |
+
- I've heard the term "differential diagnosis" before. What is the purpose of differential
|
35 |
+
diagnosis?
|
36 |
+
- Hello, I'm interested in learning about the various ways that diseases can be
|
37 |
+
treated. Can you tell me some common ways to treat disease?
|
38 |
+
- I was just wondering about what happens during a typical doctor's visit. What
|
39 |
+
kinds of medical devices are typically used in basic diagnostic procedures?
|
40 |
+
- source_sentence: Typically, individual governments establish legal, credentialing,
|
41 |
+
and financing frameworks to support health care systems. These frameworks help
|
42 |
+
to structure the way health care is delivered and accessed within a country.
|
43 |
+
sentences:
|
44 |
+
- That makes sense. I'm also curious about the frameworks themselves. What types
|
45 |
+
of frameworks are typically established by individual governments to support health
|
46 |
+
care systems?
|
47 |
+
- I see. Where is contemporary medicine generally conducted?
|
48 |
+
- That makes sense. I've been to the doctor's office a few times and I've seen them
|
49 |
+
use those devices. What is the role of physicians and physician assistants in
|
50 |
+
modern clinical practice?
|
51 |
+
- source_sentence: The information gathered during a medical encounter is documented
|
52 |
+
in the medical record, which is a legal document in many jurisdictions. This record
|
53 |
+
contains all the relevant information about the patient's condition, treatment,
|
54 |
+
and medical history, and is used to guide future care and treatment decisions.
|
55 |
+
sentences:
|
56 |
+
- I see. I think I understand, but I'm a bit confused. Is there a more general term
|
57 |
+
for medical treatments that are used outside of scientific medicine?
|
58 |
+
- That makes sense. What types of medical information might you collect from a patient's
|
59 |
+
medical history?
|
60 |
+
- What happens to the information gathered during a medical encounter?
|
61 |
+
- source_sentence: Regional differences in culture and technology are significant
|
62 |
+
factors that contribute to variations in medical availability and clinical practice
|
63 |
+
around the world. These factors can shape the way healthcare is delivered, the
|
64 |
+
types of treatments that are available, and even the way patients interact with
|
65 |
+
healthcare professionals. It's fascinating to learn about these differences and
|
66 |
+
how they impact healthcare outcomes.
|
67 |
+
sentences:
|
68 |
+
- I see. I'm curious about the term "therapy" in the context of treating disease.
|
69 |
+
Can you explain what you understand by that term?
|
70 |
+
- Hi, I'm learning about medical interviews, and I'm a bit confused about the information
|
71 |
+
that's gathered about a patient's occupation and lifestyle. What information is
|
72 |
+
typically gathered during the interview?
|
73 |
+
- I see. I'm also interested in learning more about the variations in medical availability
|
74 |
+
and clinical practice around the world. What are some factors that contribute
|
75 |
+
to variations in medical availability and clinical practice around the world?
|
76 |
+
pipeline_tag: sentence-similarity
|
77 |
+
library_name: sentence-transformers
|
78 |
+
metrics:
|
79 |
+
- cosine_accuracy@1
|
80 |
+
- cosine_accuracy@3
|
81 |
+
- cosine_accuracy@5
|
82 |
+
- cosine_accuracy@10
|
83 |
+
- cosine_precision@1
|
84 |
+
- cosine_precision@3
|
85 |
+
- cosine_precision@5
|
86 |
+
- cosine_precision@10
|
87 |
+
- cosine_recall@1
|
88 |
+
- cosine_recall@3
|
89 |
+
- cosine_recall@5
|
90 |
+
- cosine_recall@10
|
91 |
+
- cosine_ndcg@10
|
92 |
+
- cosine_mrr@10
|
93 |
+
- cosine_map@100
|
94 |
+
model-index:
|
95 |
+
- name: ModernBERT Embed base Legal Matryoshka
|
96 |
+
results:
|
97 |
+
- task:
|
98 |
+
type: information-retrieval
|
99 |
+
name: Information Retrieval
|
100 |
+
dataset:
|
101 |
+
name: dim 768
|
102 |
+
type: dim_768
|
103 |
+
metrics:
|
104 |
+
- type: cosine_accuracy@1
|
105 |
+
value: 0.8333333333333334
|
106 |
+
name: Cosine Accuracy@1
|
107 |
+
- type: cosine_accuracy@3
|
108 |
+
value: 1.0
|
109 |
+
name: Cosine Accuracy@3
|
110 |
+
- type: cosine_accuracy@5
|
111 |
+
value: 1.0
|
112 |
+
name: Cosine Accuracy@5
|
113 |
+
- type: cosine_accuracy@10
|
114 |
+
value: 1.0
|
115 |
+
name: Cosine Accuracy@10
|
116 |
+
- type: cosine_precision@1
|
117 |
+
value: 0.8333333333333334
|
118 |
+
name: Cosine Precision@1
|
119 |
+
- type: cosine_precision@3
|
120 |
+
value: 0.3333333333333333
|
121 |
+
name: Cosine Precision@3
|
122 |
+
- type: cosine_precision@5
|
123 |
+
value: 0.19999999999999998
|
124 |
+
name: Cosine Precision@5
|
125 |
+
- type: cosine_precision@10
|
126 |
+
value: 0.09999999999999999
|
127 |
+
name: Cosine Precision@10
|
128 |
+
- type: cosine_recall@1
|
129 |
+
value: 0.8333333333333334
|
130 |
+
name: Cosine Recall@1
|
131 |
+
- type: cosine_recall@3
|
132 |
+
value: 1.0
|
133 |
+
name: Cosine Recall@3
|
134 |
+
- type: cosine_recall@5
|
135 |
+
value: 1.0
|
136 |
+
name: Cosine Recall@5
|
137 |
+
- type: cosine_recall@10
|
138 |
+
value: 1.0
|
139 |
+
name: Cosine Recall@10
|
140 |
+
- type: cosine_ndcg@10
|
141 |
+
value: 0.9384882922619097
|
142 |
+
name: Cosine Ndcg@10
|
143 |
+
- type: cosine_mrr@10
|
144 |
+
value: 0.9166666666666666
|
145 |
+
name: Cosine Mrr@10
|
146 |
+
- type: cosine_map@100
|
147 |
+
value: 0.9166666666666666
|
148 |
+
name: Cosine Map@100
|
149 |
+
- task:
|
150 |
+
type: information-retrieval
|
151 |
+
name: Information Retrieval
|
152 |
+
dataset:
|
153 |
+
name: dim 512
|
154 |
+
type: dim_512
|
155 |
+
metrics:
|
156 |
+
- type: cosine_accuracy@1
|
157 |
+
value: 1.0
|
158 |
+
name: Cosine Accuracy@1
|
159 |
+
- type: cosine_accuracy@3
|
160 |
+
value: 1.0
|
161 |
+
name: Cosine Accuracy@3
|
162 |
+
- type: cosine_accuracy@5
|
163 |
+
value: 1.0
|
164 |
+
name: Cosine Accuracy@5
|
165 |
+
- type: cosine_accuracy@10
|
166 |
+
value: 1.0
|
167 |
+
name: Cosine Accuracy@10
|
168 |
+
- type: cosine_precision@1
|
169 |
+
value: 1.0
|
170 |
+
name: Cosine Precision@1
|
171 |
+
- type: cosine_precision@3
|
172 |
+
value: 0.3333333333333333
|
173 |
+
name: Cosine Precision@3
|
174 |
+
- type: cosine_precision@5
|
175 |
+
value: 0.19999999999999998
|
176 |
+
name: Cosine Precision@5
|
177 |
+
- type: cosine_precision@10
|
178 |
+
value: 0.09999999999999999
|
179 |
+
name: Cosine Precision@10
|
180 |
+
- type: cosine_recall@1
|
181 |
+
value: 1.0
|
182 |
+
name: Cosine Recall@1
|
183 |
+
- type: cosine_recall@3
|
184 |
+
value: 1.0
|
185 |
+
name: Cosine Recall@3
|
186 |
+
- type: cosine_recall@5
|
187 |
+
value: 1.0
|
188 |
+
name: Cosine Recall@5
|
189 |
+
- type: cosine_recall@10
|
190 |
+
value: 1.0
|
191 |
+
name: Cosine Recall@10
|
192 |
+
- type: cosine_ndcg@10
|
193 |
+
value: 1.0
|
194 |
+
name: Cosine Ndcg@10
|
195 |
+
- type: cosine_mrr@10
|
196 |
+
value: 1.0
|
197 |
+
name: Cosine Mrr@10
|
198 |
+
- type: cosine_map@100
|
199 |
+
value: 1.0
|
200 |
+
name: Cosine Map@100
|
201 |
+
- task:
|
202 |
+
type: information-retrieval
|
203 |
+
name: Information Retrieval
|
204 |
+
dataset:
|
205 |
+
name: dim 256
|
206 |
+
type: dim_256
|
207 |
+
metrics:
|
208 |
+
- type: cosine_accuracy@1
|
209 |
+
value: 1.0
|
210 |
+
name: Cosine Accuracy@1
|
211 |
+
- type: cosine_accuracy@3
|
212 |
+
value: 1.0
|
213 |
+
name: Cosine Accuracy@3
|
214 |
+
- type: cosine_accuracy@5
|
215 |
+
value: 1.0
|
216 |
+
name: Cosine Accuracy@5
|
217 |
+
- type: cosine_accuracy@10
|
218 |
+
value: 1.0
|
219 |
+
name: Cosine Accuracy@10
|
220 |
+
- type: cosine_precision@1
|
221 |
+
value: 1.0
|
222 |
+
name: Cosine Precision@1
|
223 |
+
- type: cosine_precision@3
|
224 |
+
value: 0.3333333333333333
|
225 |
+
name: Cosine Precision@3
|
226 |
+
- type: cosine_precision@5
|
227 |
+
value: 0.19999999999999998
|
228 |
+
name: Cosine Precision@5
|
229 |
+
- type: cosine_precision@10
|
230 |
+
value: 0.09999999999999999
|
231 |
+
name: Cosine Precision@10
|
232 |
+
- type: cosine_recall@1
|
233 |
+
value: 1.0
|
234 |
+
name: Cosine Recall@1
|
235 |
+
- type: cosine_recall@3
|
236 |
+
value: 1.0
|
237 |
+
name: Cosine Recall@3
|
238 |
+
- type: cosine_recall@5
|
239 |
+
value: 1.0
|
240 |
+
name: Cosine Recall@5
|
241 |
+
- type: cosine_recall@10
|
242 |
+
value: 1.0
|
243 |
+
name: Cosine Recall@10
|
244 |
+
- type: cosine_ndcg@10
|
245 |
+
value: 1.0
|
246 |
+
name: Cosine Ndcg@10
|
247 |
+
- type: cosine_mrr@10
|
248 |
+
value: 1.0
|
249 |
+
name: Cosine Mrr@10
|
250 |
+
- type: cosine_map@100
|
251 |
+
value: 1.0
|
252 |
+
name: Cosine Map@100
|
253 |
+
- task:
|
254 |
+
type: information-retrieval
|
255 |
+
name: Information Retrieval
|
256 |
+
dataset:
|
257 |
+
name: dim 128
|
258 |
+
type: dim_128
|
259 |
+
metrics:
|
260 |
+
- type: cosine_accuracy@1
|
261 |
+
value: 0.8333333333333334
|
262 |
+
name: Cosine Accuracy@1
|
263 |
+
- type: cosine_accuracy@3
|
264 |
+
value: 1.0
|
265 |
+
name: Cosine Accuracy@3
|
266 |
+
- type: cosine_accuracy@5
|
267 |
+
value: 1.0
|
268 |
+
name: Cosine Accuracy@5
|
269 |
+
- type: cosine_accuracy@10
|
270 |
+
value: 1.0
|
271 |
+
name: Cosine Accuracy@10
|
272 |
+
- type: cosine_precision@1
|
273 |
+
value: 0.8333333333333334
|
274 |
+
name: Cosine Precision@1
|
275 |
+
- type: cosine_precision@3
|
276 |
+
value: 0.3333333333333333
|
277 |
+
name: Cosine Precision@3
|
278 |
+
- type: cosine_precision@5
|
279 |
+
value: 0.19999999999999998
|
280 |
+
name: Cosine Precision@5
|
281 |
+
- type: cosine_precision@10
|
282 |
+
value: 0.09999999999999999
|
283 |
+
name: Cosine Precision@10
|
284 |
+
- type: cosine_recall@1
|
285 |
+
value: 0.8333333333333334
|
286 |
+
name: Cosine Recall@1
|
287 |
+
- type: cosine_recall@3
|
288 |
+
value: 1.0
|
289 |
+
name: Cosine Recall@3
|
290 |
+
- type: cosine_recall@5
|
291 |
+
value: 1.0
|
292 |
+
name: Cosine Recall@5
|
293 |
+
- type: cosine_recall@10
|
294 |
+
value: 1.0
|
295 |
+
name: Cosine Recall@10
|
296 |
+
- type: cosine_ndcg@10
|
297 |
+
value: 0.9384882922619097
|
298 |
+
name: Cosine Ndcg@10
|
299 |
+
- type: cosine_mrr@10
|
300 |
+
value: 0.9166666666666666
|
301 |
+
name: Cosine Mrr@10
|
302 |
+
- type: cosine_map@100
|
303 |
+
value: 0.9166666666666666
|
304 |
+
name: Cosine Map@100
|
305 |
+
- task:
|
306 |
+
type: information-retrieval
|
307 |
+
name: Information Retrieval
|
308 |
+
dataset:
|
309 |
+
name: dim 64
|
310 |
+
type: dim_64
|
311 |
+
metrics:
|
312 |
+
- type: cosine_accuracy@1
|
313 |
+
value: 1.0
|
314 |
+
name: Cosine Accuracy@1
|
315 |
+
- type: cosine_accuracy@3
|
316 |
+
value: 1.0
|
317 |
+
name: Cosine Accuracy@3
|
318 |
+
- type: cosine_accuracy@5
|
319 |
+
value: 1.0
|
320 |
+
name: Cosine Accuracy@5
|
321 |
+
- type: cosine_accuracy@10
|
322 |
+
value: 1.0
|
323 |
+
name: Cosine Accuracy@10
|
324 |
+
- type: cosine_precision@1
|
325 |
+
value: 1.0
|
326 |
+
name: Cosine Precision@1
|
327 |
+
- type: cosine_precision@3
|
328 |
+
value: 0.3333333333333333
|
329 |
+
name: Cosine Precision@3
|
330 |
+
- type: cosine_precision@5
|
331 |
+
value: 0.19999999999999998
|
332 |
+
name: Cosine Precision@5
|
333 |
+
- type: cosine_precision@10
|
334 |
+
value: 0.09999999999999999
|
335 |
+
name: Cosine Precision@10
|
336 |
+
- type: cosine_recall@1
|
337 |
+
value: 1.0
|
338 |
+
name: Cosine Recall@1
|
339 |
+
- type: cosine_recall@3
|
340 |
+
value: 1.0
|
341 |
+
name: Cosine Recall@3
|
342 |
+
- type: cosine_recall@5
|
343 |
+
value: 1.0
|
344 |
+
name: Cosine Recall@5
|
345 |
+
- type: cosine_recall@10
|
346 |
+
value: 1.0
|
347 |
+
name: Cosine Recall@10
|
348 |
+
- type: cosine_ndcg@10
|
349 |
+
value: 1.0
|
350 |
+
name: Cosine Ndcg@10
|
351 |
+
- type: cosine_mrr@10
|
352 |
+
value: 1.0
|
353 |
+
name: Cosine Mrr@10
|
354 |
+
- type: cosine_map@100
|
355 |
+
value: 1.0
|
356 |
+
name: Cosine Map@100
|
357 |
+
---
|
358 |
+
|
359 |
+
# ModernBERT Embed base Legal Matryoshka
|
360 |
+
|
361 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
362 |
+
|
363 |
+
## Model Details
|
364 |
+
|
365 |
+
### Model Description
|
366 |
+
- **Model Type:** Sentence Transformer
|
367 |
+
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
|
368 |
+
- **Maximum Sequence Length:** 8192 tokens
|
369 |
+
- **Output Dimensionality:** 768 dimensions
|
370 |
+
- **Similarity Function:** Cosine Similarity
|
371 |
+
- **Training Dataset:**
|
372 |
+
- json
|
373 |
+
- **Language:** en
|
374 |
+
- **License:** apache-2.0
|
375 |
+
|
376 |
+
### Model Sources
|
377 |
+
|
378 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
379 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
380 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
381 |
+
|
382 |
+
### Full Model Architecture
|
383 |
+
|
384 |
+
```
|
385 |
+
SentenceTransformer(
|
386 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
387 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
388 |
+
(2): Normalize()
|
389 |
+
)
|
390 |
+
```
|
391 |
+
|
392 |
+
## Usage
|
393 |
+
|
394 |
+
### Direct Usage (Sentence Transformers)
|
395 |
+
|
396 |
+
First install the Sentence Transformers library:
|
397 |
+
|
398 |
+
```bash
|
399 |
+
pip install -U sentence-transformers
|
400 |
+
```
|
401 |
+
|
402 |
+
Then you can load this model and run inference.
|
403 |
+
```python
|
404 |
+
from sentence_transformers import SentenceTransformer
|
405 |
+
|
406 |
+
# Download from the 🤗 Hub
|
407 |
+
model = SentenceTransformer("Jonuu/LawyerAI1")
|
408 |
+
# Run inference
|
409 |
+
sentences = [
|
410 |
+
"Regional differences in culture and technology are significant factors that contribute to variations in medical availability and clinical practice around the world. These factors can shape the way healthcare is delivered, the types of treatments that are available, and even the way patients interact with healthcare professionals. It's fascinating to learn about these differences and how they impact healthcare outcomes.",
|
411 |
+
"I see. I'm also interested in learning more about the variations in medical availability and clinical practice around the world. What are some factors that contribute to variations in medical availability and clinical practice around the world?",
|
412 |
+
"Hi, I'm learning about medical interviews, and I'm a bit confused about the information that's gathered about a patient's occupation and lifestyle. What information is typically gathered during the interview?",
|
413 |
+
]
|
414 |
+
embeddings = model.encode(sentences)
|
415 |
+
print(embeddings.shape)
|
416 |
+
# [3, 768]
|
417 |
+
|
418 |
+
# Get the similarity scores for the embeddings
|
419 |
+
similarities = model.similarity(embeddings, embeddings)
|
420 |
+
print(similarities.shape)
|
421 |
+
# [3, 3]
|
422 |
+
```
|
423 |
+
|
424 |
+
<!--
|
425 |
+
### Direct Usage (Transformers)
|
426 |
+
|
427 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
428 |
+
|
429 |
+
</details>
|
430 |
+
-->
|
431 |
+
|
432 |
+
<!--
|
433 |
+
### Downstream Usage (Sentence Transformers)
|
434 |
+
|
435 |
+
You can finetune this model on your own dataset.
|
436 |
+
|
437 |
+
<details><summary>Click to expand</summary>
|
438 |
+
|
439 |
+
</details>
|
440 |
+
-->
|
441 |
+
|
442 |
+
<!--
|
443 |
+
### Out-of-Scope Use
|
444 |
+
|
445 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
446 |
+
-->
|
447 |
+
|
448 |
+
## Evaluation
|
449 |
+
|
450 |
+
### Metrics
|
451 |
+
|
452 |
+
#### Information Retrieval
|
453 |
+
|
454 |
+
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
|
455 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
456 |
+
|
457 |
+
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|
458 |
+
|:--------------------|:-----------|:--------|:--------|:-----------|:--------|
|
459 |
+
| cosine_accuracy@1 | 0.8333 | 1.0 | 1.0 | 0.8333 | 1.0 |
|
460 |
+
| cosine_accuracy@3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|
461 |
+
| cosine_accuracy@5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|
462 |
+
| cosine_accuracy@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|
463 |
+
| cosine_precision@1 | 0.8333 | 1.0 | 1.0 | 0.8333 | 1.0 |
|
464 |
+
| cosine_precision@3 | 0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.3333 |
|
465 |
+
| cosine_precision@5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
|
466 |
+
| cosine_precision@10 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
|
467 |
+
| cosine_recall@1 | 0.8333 | 1.0 | 1.0 | 0.8333 | 1.0 |
|
468 |
+
| cosine_recall@3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|
469 |
+
| cosine_recall@5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|
470 |
+
| cosine_recall@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|
471 |
+
| **cosine_ndcg@10** | **0.9385** | **1.0** | **1.0** | **0.9385** | **1.0** |
|
472 |
+
| cosine_mrr@10 | 0.9167 | 1.0 | 1.0 | 0.9167 | 1.0 |
|
473 |
+
| cosine_map@100 | 0.9167 | 1.0 | 1.0 | 0.9167 | 1.0 |
|
474 |
+
|
475 |
+
<!--
|
476 |
+
## Bias, Risks and Limitations
|
477 |
+
|
478 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
479 |
+
-->
|
480 |
+
|
481 |
+
<!--
|
482 |
+
### Recommendations
|
483 |
+
|
484 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
485 |
+
-->
|
486 |
+
|
487 |
+
## Training Details
|
488 |
+
|
489 |
+
### Training Dataset
|
490 |
+
|
491 |
+
#### json
|
492 |
+
|
493 |
+
* Dataset: json
|
494 |
+
* Size: 46 training samples
|
495 |
+
* Columns: <code>positive</code> and <code>anchor</code>
|
496 |
+
* Approximate statistics based on the first 46 samples:
|
497 |
+
| | positive | anchor |
|
498 |
+
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
499 |
+
| type | string | string |
|
500 |
+
| details | <ul><li>min: 37 tokens</li><li>mean: 71.26 tokens</li><li>max: 148 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 29.57 tokens</li><li>max: 47 tokens</li></ul> |
|
501 |
+
* Samples:
|
502 |
+
| positive | anchor |
|
503 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|
|
504 |
+
| <code>The characteristics of a health care system have a significant impact on the way medical care is provided. The structure, financing, and policies of a health care system can all influence the availability, accessibility, and quality of medical care.</code> | <code>That helps clarify things. How do the characteristics of a health care system impact the way medical care is provided?</code> |
|
505 |
+
| <code>Ancient philosophers and physicians applied treatments like bloodletting based on theoretical frameworks such as humorism, which attempted to explain the workings of the human body. These early theories were often influenced by cultural and philosophical beliefs, and they laid the groundwork for the development of modern medical science. It's interesting to see how our understanding of the human body has evolved over time, isn't it?</code> | <code>I'm curious about ancient philosophers and physicians. How did they approach medicine?</code> |
|
506 |
+
| <code>Quackery is an interesting topic. In the context of medicine, quackery refers to medical treatments that are used outside of scientific medicine, but have significant concerns related to ethics, safety, and efficacy. This means that these treatments are not necessarily supported by scientific evidence, and may even be harmful to patients.</code> | <code>I was reading about health and wellness, and I came across the term "quackery." What is quackery in the context of medicine?</code> |
|
507 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
508 |
+
```json
|
509 |
+
{
|
510 |
+
"loss": "MultipleNegativesRankingLoss",
|
511 |
+
"matryoshka_dims": [
|
512 |
+
768,
|
513 |
+
512,
|
514 |
+
256,
|
515 |
+
128,
|
516 |
+
64
|
517 |
+
],
|
518 |
+
"matryoshka_weights": [
|
519 |
+
1,
|
520 |
+
1,
|
521 |
+
1,
|
522 |
+
1,
|
523 |
+
1
|
524 |
+
],
|
525 |
+
"n_dims_per_step": -1
|
526 |
+
}
|
527 |
+
```
|
528 |
+
|
529 |
+
### Training Hyperparameters
|
530 |
+
#### Non-Default Hyperparameters
|
531 |
+
|
532 |
+
- `eval_strategy`: epoch
|
533 |
+
- `per_device_train_batch_size`: 32
|
534 |
+
- `per_device_eval_batch_size`: 16
|
535 |
+
- `gradient_accumulation_steps`: 16
|
536 |
+
- `learning_rate`: 2e-05
|
537 |
+
- `num_train_epochs`: 4
|
538 |
+
- `lr_scheduler_type`: cosine
|
539 |
+
- `warmup_ratio`: 0.1
|
540 |
+
- `bf16`: True
|
541 |
+
- `tf32`: False
|
542 |
+
- `load_best_model_at_end`: True
|
543 |
+
- `optim`: adamw_torch_fused
|
544 |
+
- `batch_sampler`: no_duplicates
|
545 |
+
|
546 |
+
#### All Hyperparameters
|
547 |
+
<details><summary>Click to expand</summary>
|
548 |
+
|
549 |
+
- `overwrite_output_dir`: False
|
550 |
+
- `do_predict`: False
|
551 |
+
- `eval_strategy`: epoch
|
552 |
+
- `prediction_loss_only`: True
|
553 |
+
- `per_device_train_batch_size`: 32
|
554 |
+
- `per_device_eval_batch_size`: 16
|
555 |
+
- `per_gpu_train_batch_size`: None
|
556 |
+
- `per_gpu_eval_batch_size`: None
|
557 |
+
- `gradient_accumulation_steps`: 16
|
558 |
+
- `eval_accumulation_steps`: None
|
559 |
+
- `torch_empty_cache_steps`: None
|
560 |
+
- `learning_rate`: 2e-05
|
561 |
+
- `weight_decay`: 0.0
|
562 |
+
- `adam_beta1`: 0.9
|
563 |
+
- `adam_beta2`: 0.999
|
564 |
+
- `adam_epsilon`: 1e-08
|
565 |
+
- `max_grad_norm`: 1.0
|
566 |
+
- `num_train_epochs`: 4
|
567 |
+
- `max_steps`: -1
|
568 |
+
- `lr_scheduler_type`: cosine
|
569 |
+
- `lr_scheduler_kwargs`: {}
|
570 |
+
- `warmup_ratio`: 0.1
|
571 |
+
- `warmup_steps`: 0
|
572 |
+
- `log_level`: passive
|
573 |
+
- `log_level_replica`: warning
|
574 |
+
- `log_on_each_node`: True
|
575 |
+
- `logging_nan_inf_filter`: True
|
576 |
+
- `save_safetensors`: True
|
577 |
+
- `save_on_each_node`: False
|
578 |
+
- `save_only_model`: False
|
579 |
+
- `restore_callback_states_from_checkpoint`: False
|
580 |
+
- `no_cuda`: False
|
581 |
+
- `use_cpu`: False
|
582 |
+
- `use_mps_device`: False
|
583 |
+
- `seed`: 42
|
584 |
+
- `data_seed`: None
|
585 |
+
- `jit_mode_eval`: False
|
586 |
+
- `use_ipex`: False
|
587 |
+
- `bf16`: True
|
588 |
+
- `fp16`: False
|
589 |
+
- `fp16_opt_level`: O1
|
590 |
+
- `half_precision_backend`: auto
|
591 |
+
- `bf16_full_eval`: False
|
592 |
+
- `fp16_full_eval`: False
|
593 |
+
- `tf32`: False
|
594 |
+
- `local_rank`: 0
|
595 |
+
- `ddp_backend`: None
|
596 |
+
- `tpu_num_cores`: None
|
597 |
+
- `tpu_metrics_debug`: False
|
598 |
+
- `debug`: []
|
599 |
+
- `dataloader_drop_last`: False
|
600 |
+
- `dataloader_num_workers`: 0
|
601 |
+
- `dataloader_prefetch_factor`: None
|
602 |
+
- `past_index`: -1
|
603 |
+
- `disable_tqdm`: False
|
604 |
+
- `remove_unused_columns`: True
|
605 |
+
- `label_names`: None
|
606 |
+
- `load_best_model_at_end`: True
|
607 |
+
- `ignore_data_skip`: False
|
608 |
+
- `fsdp`: []
|
609 |
+
- `fsdp_min_num_params`: 0
|
610 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
611 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
612 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
613 |
+
- `deepspeed`: None
|
614 |
+
- `label_smoothing_factor`: 0.0
|
615 |
+
- `optim`: adamw_torch_fused
|
616 |
+
- `optim_args`: None
|
617 |
+
- `adafactor`: False
|
618 |
+
- `group_by_length`: False
|
619 |
+
- `length_column_name`: length
|
620 |
+
- `ddp_find_unused_parameters`: None
|
621 |
+
- `ddp_bucket_cap_mb`: None
|
622 |
+
- `ddp_broadcast_buffers`: False
|
623 |
+
- `dataloader_pin_memory`: True
|
624 |
+
- `dataloader_persistent_workers`: False
|
625 |
+
- `skip_memory_metrics`: True
|
626 |
+
- `use_legacy_prediction_loop`: False
|
627 |
+
- `push_to_hub`: False
|
628 |
+
- `resume_from_checkpoint`: None
|
629 |
+
- `hub_model_id`: None
|
630 |
+
- `hub_strategy`: every_save
|
631 |
+
- `hub_private_repo`: None
|
632 |
+
- `hub_always_push`: False
|
633 |
+
- `gradient_checkpointing`: False
|
634 |
+
- `gradient_checkpointing_kwargs`: None
|
635 |
+
- `include_inputs_for_metrics`: False
|
636 |
+
- `include_for_metrics`: []
|
637 |
+
- `eval_do_concat_batches`: True
|
638 |
+
- `fp16_backend`: auto
|
639 |
+
- `push_to_hub_model_id`: None
|
640 |
+
- `push_to_hub_organization`: None
|
641 |
+
- `mp_parameters`:
|
642 |
+
- `auto_find_batch_size`: False
|
643 |
+
- `full_determinism`: False
|
644 |
+
- `torchdynamo`: None
|
645 |
+
- `ray_scope`: last
|
646 |
+
- `ddp_timeout`: 1800
|
647 |
+
- `torch_compile`: False
|
648 |
+
- `torch_compile_backend`: None
|
649 |
+
- `torch_compile_mode`: None
|
650 |
+
- `dispatch_batches`: None
|
651 |
+
- `split_batches`: None
|
652 |
+
- `include_tokens_per_second`: False
|
653 |
+
- `include_num_input_tokens_seen`: False
|
654 |
+
- `neftune_noise_alpha`: None
|
655 |
+
- `optim_target_modules`: None
|
656 |
+
- `batch_eval_metrics`: False
|
657 |
+
- `eval_on_start`: False
|
658 |
+
- `use_liger_kernel`: False
|
659 |
+
- `eval_use_gather_object`: False
|
660 |
+
- `average_tokens_across_devices`: False
|
661 |
+
- `prompts`: None
|
662 |
+
- `batch_sampler`: no_duplicates
|
663 |
+
- `multi_dataset_batch_sampler`: proportional
|
664 |
+
|
665 |
+
</details>
|
666 |
+
|
667 |
+
### Training Logs
|
668 |
+
| Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
669 |
+
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
670 |
+
| **1.0** | **1** | **0.9385** | **1.0** | **0.9385** | **0.9385** | **1.0** |
|
671 |
+
| 2.0 | 2 | 0.9385 | 1.0 | 1.0 | 0.9385 | 1.0 |
|
672 |
+
| 3.0 | 3 | 0.9385 | 1.0 | 1.0 | 0.9385 | 1.0 |
|
673 |
+
| 4.0 | 4 | 0.9385 | 1.0 | 1.0 | 0.9385 | 1.0 |
|
674 |
+
|
675 |
+
* The bold row denotes the saved checkpoint.
|
676 |
+
|
677 |
+
### Framework Versions
|
678 |
+
- Python: 3.11.11
|
679 |
+
- Sentence Transformers: 3.4.1
|
680 |
+
- Transformers: 4.49.0
|
681 |
+
- PyTorch: 2.6.0+cu118
|
682 |
+
- Accelerate: 1.3.0
|
683 |
+
- Datasets: 3.3.2
|
684 |
+
- Tokenizers: 0.21.0
|
685 |
+
|
686 |
+
## Citation
|
687 |
+
|
688 |
+
### BibTeX
|
689 |
+
|
690 |
+
#### Sentence Transformers
|
691 |
+
```bibtex
|
692 |
+
@inproceedings{reimers-2019-sentence-bert,
|
693 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
694 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
695 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
696 |
+
month = "11",
|
697 |
+
year = "2019",
|
698 |
+
publisher = "Association for Computational Linguistics",
|
699 |
+
url = "https://arxiv.org/abs/1908.10084",
|
700 |
+
}
|
701 |
+
```
|
702 |
+
|
703 |
+
#### MatryoshkaLoss
|
704 |
+
```bibtex
|
705 |
+
@misc{kusupati2024matryoshka,
|
706 |
+
title={Matryoshka Representation Learning},
|
707 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
708 |
+
year={2024},
|
709 |
+
eprint={2205.13147},
|
710 |
+
archivePrefix={arXiv},
|
711 |
+
primaryClass={cs.LG}
|
712 |
+
}
|
713 |
+
```
|
714 |
+
|
715 |
+
#### MultipleNegativesRankingLoss
|
716 |
+
```bibtex
|
717 |
+
@misc{henderson2017efficient,
|
718 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
719 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
720 |
+
year={2017},
|
721 |
+
eprint={1705.00652},
|
722 |
+
archivePrefix={arXiv},
|
723 |
+
primaryClass={cs.CL}
|
724 |
+
}
|
725 |
+
```
|
726 |
+
|
727 |
+
<!--
|
728 |
+
## Glossary
|
729 |
+
|
730 |
+
*Clearly define terms in order to be accessible across audiences.*
|
731 |
+
-->
|
732 |
+
|
733 |
+
<!--
|
734 |
+
## Model Card Authors
|
735 |
+
|
736 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
737 |
+
-->
|
738 |
+
|
739 |
+
<!--
|
740 |
+
## Model Card Contact
|
741 |
+
|
742 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
743 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nomic-ai/modernbert-embed-base",
|
3 |
+
"architectures": [
|
4 |
+
"ModernBertModel"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 50281,
|
9 |
+
"classifier_activation": "gelu",
|
10 |
+
"classifier_bias": false,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"classifier_pooling": "mean",
|
13 |
+
"cls_token_id": 50281,
|
14 |
+
"decoder_bias": true,
|
15 |
+
"deterministic_flash_attn": false,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"eos_token_id": 50282,
|
18 |
+
"global_attn_every_n_layers": 3,
|
19 |
+
"global_rope_theta": 160000.0,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"hidden_activation": "gelu",
|
22 |
+
"hidden_size": 768,
|
23 |
+
"initializer_cutoff_factor": 2.0,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 1152,
|
26 |
+
"layer_norm_eps": 1e-05,
|
27 |
+
"local_attention": 128,
|
28 |
+
"local_rope_theta": 10000.0,
|
29 |
+
"max_position_embeddings": 8192,
|
30 |
+
"mlp_bias": false,
|
31 |
+
"mlp_dropout": 0.0,
|
32 |
+
"model_type": "modernbert",
|
33 |
+
"norm_bias": false,
|
34 |
+
"norm_eps": 1e-05,
|
35 |
+
"num_attention_heads": 12,
|
36 |
+
"num_hidden_layers": 22,
|
37 |
+
"pad_token_id": 50283,
|
38 |
+
"position_embedding_type": "absolute",
|
39 |
+
"reference_compile": true,
|
40 |
+
"repad_logits_with_grad": false,
|
41 |
+
"sep_token_id": 50282,
|
42 |
+
"sparse_pred_ignore_index": -100,
|
43 |
+
"sparse_prediction": false,
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.49.0",
|
46 |
+
"vocab_size": 50368
|
47 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.6.0+cu118"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69f22ccd1ee0971b6173678c4fcadd29a49a3f5b6b8a6927002418abe4bd5b9c
|
3 |
+
size 596070136
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": true,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "|||IP_ADDRESS|||",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<|padding|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"50254": {
|
20 |
+
"content": " ",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": true,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"50255": {
|
28 |
+
"content": " ",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"50256": {
|
36 |
+
"content": " ",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": true,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"50257": {
|
44 |
+
"content": " ",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": true,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"50258": {
|
52 |
+
"content": " ",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": true,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
},
|
59 |
+
"50259": {
|
60 |
+
"content": " ",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": false
|
66 |
+
},
|
67 |
+
"50260": {
|
68 |
+
"content": " ",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": true,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": false
|
74 |
+
},
|
75 |
+
"50261": {
|
76 |
+
"content": " ",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": true,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": false
|
82 |
+
},
|
83 |
+
"50262": {
|
84 |
+
"content": " ",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": true,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": false
|
90 |
+
},
|
91 |
+
"50263": {
|
92 |
+
"content": " ",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": true,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": false
|
98 |
+
},
|
99 |
+
"50264": {
|
100 |
+
"content": " ",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": true,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": false
|
106 |
+
},
|
107 |
+
"50265": {
|
108 |
+
"content": " ",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": true,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": false
|
114 |
+
},
|
115 |
+
"50266": {
|
116 |
+
"content": " ",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": true,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": false
|
122 |
+
},
|
123 |
+
"50267": {
|
124 |
+
"content": " ",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": true,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": false
|
130 |
+
},
|
131 |
+
"50268": {
|
132 |
+
"content": " ",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": true,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": false
|
138 |
+
},
|
139 |
+
"50269": {
|
140 |
+
"content": " ",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": true,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": false
|
146 |
+
},
|
147 |
+
"50270": {
|
148 |
+
"content": " ",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": true,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": false
|
154 |
+
},
|
155 |
+
"50271": {
|
156 |
+
"content": " ",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": true,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": false
|
162 |
+
},
|
163 |
+
"50272": {
|
164 |
+
"content": " ",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": true,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": false
|
170 |
+
},
|
171 |
+
"50273": {
|
172 |
+
"content": " ",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": true,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"50274": {
|
180 |
+
"content": " ",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": true,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"50275": {
|
188 |
+
"content": " ",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": true,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"50276": {
|
196 |
+
"content": " ",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": true,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"50277": {
|
204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": true,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"50278": {
|
212 |
+
"content": "|||PHONE_NUMBER|||",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": true,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"50279": {
|
220 |
+
"content": "<|endoftext|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"50280": {
|
228 |
+
"content": "[UNK]",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"50281": {
|
236 |
+
"content": "[CLS]",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"50282": {
|
244 |
+
"content": "[SEP]",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"50283": {
|
252 |
+
"content": "[PAD]",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"50284": {
|
260 |
+
"content": "[MASK]",
|
261 |
+
"lstrip": true,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"50285": {
|
268 |
+
"content": "[unused0]",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": true,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": false
|
274 |
+
},
|
275 |
+
"50286": {
|
276 |
+
"content": "[unused1]",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": true,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": false
|
282 |
+
},
|
283 |
+
"50287": {
|
284 |
+
"content": "[unused2]",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": true,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": false
|
290 |
+
},
|
291 |
+
"50288": {
|
292 |
+
"content": "[unused3]",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": true,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": false
|
298 |
+
},
|
299 |
+
"50289": {
|
300 |
+
"content": "[unused4]",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": true,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": false
|
306 |
+
},
|
307 |
+
"50290": {
|
308 |
+
"content": "[unused5]",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": true,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": false
|
314 |
+
},
|
315 |
+
"50291": {
|
316 |
+
"content": "[unused6]",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": true,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": false
|
322 |
+
},
|
323 |
+
"50292": {
|
324 |
+
"content": "[unused7]",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": true,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": false
|
330 |
+
},
|
331 |
+
"50293": {
|
332 |
+
"content": "[unused8]",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": true,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": false
|
338 |
+
},
|
339 |
+
"50294": {
|
340 |
+
"content": "[unused9]",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": true,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": false
|
346 |
+
},
|
347 |
+
"50295": {
|
348 |
+
"content": "[unused10]",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": true,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": false
|
354 |
+
},
|
355 |
+
"50296": {
|
356 |
+
"content": "[unused11]",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": true,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": false
|
362 |
+
},
|
363 |
+
"50297": {
|
364 |
+
"content": "[unused12]",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": true,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": false
|
370 |
+
},
|
371 |
+
"50298": {
|
372 |
+
"content": "[unused13]",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": true,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": false
|
378 |
+
},
|
379 |
+
"50299": {
|
380 |
+
"content": "[unused14]",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": true,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": false
|
386 |
+
},
|
387 |
+
"50300": {
|
388 |
+
"content": "[unused15]",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": true,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": false
|
394 |
+
},
|
395 |
+
"50301": {
|
396 |
+
"content": "[unused16]",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": true,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": false
|
402 |
+
},
|
403 |
+
"50302": {
|
404 |
+
"content": "[unused17]",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": true,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": false
|
410 |
+
},
|
411 |
+
"50303": {
|
412 |
+
"content": "[unused18]",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": true,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": false
|
418 |
+
},
|
419 |
+
"50304": {
|
420 |
+
"content": "[unused19]",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": true,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": false
|
426 |
+
},
|
427 |
+
"50305": {
|
428 |
+
"content": "[unused20]",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": true,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": false
|
434 |
+
},
|
435 |
+
"50306": {
|
436 |
+
"content": "[unused21]",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": true,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": false
|
442 |
+
},
|
443 |
+
"50307": {
|
444 |
+
"content": "[unused22]",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": true,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": false
|
450 |
+
},
|
451 |
+
"50308": {
|
452 |
+
"content": "[unused23]",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": true,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": false
|
458 |
+
},
|
459 |
+
"50309": {
|
460 |
+
"content": "[unused24]",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": true,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": false
|
466 |
+
},
|
467 |
+
"50310": {
|
468 |
+
"content": "[unused25]",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": true,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": false
|
474 |
+
},
|
475 |
+
"50311": {
|
476 |
+
"content": "[unused26]",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": true,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": false
|
482 |
+
},
|
483 |
+
"50312": {
|
484 |
+
"content": "[unused27]",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": true,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": false
|
490 |
+
},
|
491 |
+
"50313": {
|
492 |
+
"content": "[unused28]",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": true,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": false
|
498 |
+
},
|
499 |
+
"50314": {
|
500 |
+
"content": "[unused29]",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": true,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": false
|
506 |
+
},
|
507 |
+
"50315": {
|
508 |
+
"content": "[unused30]",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": true,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": false
|
514 |
+
},
|
515 |
+
"50316": {
|
516 |
+
"content": "[unused31]",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": true,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": false
|
522 |
+
},
|
523 |
+
"50317": {
|
524 |
+
"content": "[unused32]",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": true,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": false
|
530 |
+
},
|
531 |
+
"50318": {
|
532 |
+
"content": "[unused33]",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": true,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": false
|
538 |
+
},
|
539 |
+
"50319": {
|
540 |
+
"content": "[unused34]",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": true,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": false
|
546 |
+
},
|
547 |
+
"50320": {
|
548 |
+
"content": "[unused35]",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": true,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": false
|
554 |
+
},
|
555 |
+
"50321": {
|
556 |
+
"content": "[unused36]",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": true,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": false
|
562 |
+
},
|
563 |
+
"50322": {
|
564 |
+
"content": "[unused37]",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": true,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": false
|
570 |
+
},
|
571 |
+
"50323": {
|
572 |
+
"content": "[unused38]",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": true,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": false
|
578 |
+
},
|
579 |
+
"50324": {
|
580 |
+
"content": "[unused39]",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": true,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": false
|
586 |
+
},
|
587 |
+
"50325": {
|
588 |
+
"content": "[unused40]",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": true,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": false
|
594 |
+
},
|
595 |
+
"50326": {
|
596 |
+
"content": "[unused41]",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": true,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": false
|
602 |
+
},
|
603 |
+
"50327": {
|
604 |
+
"content": "[unused42]",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": true,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": false
|
610 |
+
},
|
611 |
+
"50328": {
|
612 |
+
"content": "[unused43]",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": true,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": false
|
618 |
+
},
|
619 |
+
"50329": {
|
620 |
+
"content": "[unused44]",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": true,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": false
|
626 |
+
},
|
627 |
+
"50330": {
|
628 |
+
"content": "[unused45]",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": true,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": false
|
634 |
+
},
|
635 |
+
"50331": {
|
636 |
+
"content": "[unused46]",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": true,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": false
|
642 |
+
},
|
643 |
+
"50332": {
|
644 |
+
"content": "[unused47]",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": true,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": false
|
650 |
+
},
|
651 |
+
"50333": {
|
652 |
+
"content": "[unused48]",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": true,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": false
|
658 |
+
},
|
659 |
+
"50334": {
|
660 |
+
"content": "[unused49]",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": true,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": false
|
666 |
+
},
|
667 |
+
"50335": {
|
668 |
+
"content": "[unused50]",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": true,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": false
|
674 |
+
},
|
675 |
+
"50336": {
|
676 |
+
"content": "[unused51]",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": true,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": false
|
682 |
+
},
|
683 |
+
"50337": {
|
684 |
+
"content": "[unused52]",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": true,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": false
|
690 |
+
},
|
691 |
+
"50338": {
|
692 |
+
"content": "[unused53]",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": true,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": false
|
698 |
+
},
|
699 |
+
"50339": {
|
700 |
+
"content": "[unused54]",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": true,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": false
|
706 |
+
},
|
707 |
+
"50340": {
|
708 |
+
"content": "[unused55]",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": true,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": false
|
714 |
+
},
|
715 |
+
"50341": {
|
716 |
+
"content": "[unused56]",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": true,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": false
|
722 |
+
},
|
723 |
+
"50342": {
|
724 |
+
"content": "[unused57]",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": true,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": false
|
730 |
+
},
|
731 |
+
"50343": {
|
732 |
+
"content": "[unused58]",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": true,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": false
|
738 |
+
},
|
739 |
+
"50344": {
|
740 |
+
"content": "[unused59]",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": true,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": false
|
746 |
+
},
|
747 |
+
"50345": {
|
748 |
+
"content": "[unused60]",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": true,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": false
|
754 |
+
},
|
755 |
+
"50346": {
|
756 |
+
"content": "[unused61]",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": true,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": false
|
762 |
+
},
|
763 |
+
"50347": {
|
764 |
+
"content": "[unused62]",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": true,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": false
|
770 |
+
},
|
771 |
+
"50348": {
|
772 |
+
"content": "[unused63]",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": true,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": false
|
778 |
+
},
|
779 |
+
"50349": {
|
780 |
+
"content": "[unused64]",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": true,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": false
|
786 |
+
},
|
787 |
+
"50350": {
|
788 |
+
"content": "[unused65]",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": true,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": false
|
794 |
+
},
|
795 |
+
"50351": {
|
796 |
+
"content": "[unused66]",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": true,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": false
|
802 |
+
},
|
803 |
+
"50352": {
|
804 |
+
"content": "[unused67]",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": true,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": false
|
810 |
+
},
|
811 |
+
"50353": {
|
812 |
+
"content": "[unused68]",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": true,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": false
|
818 |
+
},
|
819 |
+
"50354": {
|
820 |
+
"content": "[unused69]",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": true,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": false
|
826 |
+
},
|
827 |
+
"50355": {
|
828 |
+
"content": "[unused70]",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": true,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": false
|
834 |
+
},
|
835 |
+
"50356": {
|
836 |
+
"content": "[unused71]",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": true,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": false
|
842 |
+
},
|
843 |
+
"50357": {
|
844 |
+
"content": "[unused72]",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": true,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": false
|
850 |
+
},
|
851 |
+
"50358": {
|
852 |
+
"content": "[unused73]",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": true,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": false
|
858 |
+
},
|
859 |
+
"50359": {
|
860 |
+
"content": "[unused74]",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": true,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": false
|
866 |
+
},
|
867 |
+
"50360": {
|
868 |
+
"content": "[unused75]",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": true,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": false
|
874 |
+
},
|
875 |
+
"50361": {
|
876 |
+
"content": "[unused76]",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": true,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": false
|
882 |
+
},
|
883 |
+
"50362": {
|
884 |
+
"content": "[unused77]",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": true,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": false
|
890 |
+
},
|
891 |
+
"50363": {
|
892 |
+
"content": "[unused78]",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": true,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": false
|
898 |
+
},
|
899 |
+
"50364": {
|
900 |
+
"content": "[unused79]",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": true,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": false
|
906 |
+
},
|
907 |
+
"50365": {
|
908 |
+
"content": "[unused80]",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": true,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": false
|
914 |
+
},
|
915 |
+
"50366": {
|
916 |
+
"content": "[unused81]",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": true,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": false
|
922 |
+
},
|
923 |
+
"50367": {
|
924 |
+
"content": "[unused82]",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": true,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": false
|
930 |
+
}
|
931 |
+
},
|
932 |
+
"clean_up_tokenization_spaces": true,
|
933 |
+
"cls_token": "[CLS]",
|
934 |
+
"extra_special_tokens": {},
|
935 |
+
"mask_token": "[MASK]",
|
936 |
+
"model_input_names": [
|
937 |
+
"input_ids",
|
938 |
+
"attention_mask"
|
939 |
+
],
|
940 |
+
"model_max_length": 8192,
|
941 |
+
"pad_token": "[PAD]",
|
942 |
+
"sep_token": "[SEP]",
|
943 |
+
"tokenizer_class": "PreTrainedTokenizer",
|
944 |
+
"unk_token": "[UNK]"
|
945 |
+
}
|