Jonuu commited on
Commit
9577913
·
verified ·
1 Parent(s): a02d832

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,743 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:46
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: nomic-ai/modernbert-embed-base
14
+ widget:
15
+ - source_sentence: Medical science is the application of scientific principles to
16
+ the study and practice of medicine. It has transformed medicine by providing a
17
+ deeper understanding of the human body at the cellular and molecular levels, allowing
18
+ for more effective treatments and interventions. Medical science has enabled us
19
+ to develop new treatments, understand the causes of diseases, and improve patient
20
+ outcomes. It's had a profound impact on the way medicine is practiced today.
21
+ sentences:
22
+ - I was reading about health and wellness, and I came across the term "quackery."
23
+ What is quackery in the context of medicine?
24
+ - That's really interesting. What is medical science, and how has it impacted the
25
+ practice of medicine?
26
+ - That's helpful to know. What is the primary purpose of a physical examination
27
+ in medicine, anyway?
28
+ - source_sentence: The purpose of differential diagnosis is to rule out conditions
29
+ based on the information provided, in order to narrow down the possible causes
30
+ of a patient's symptoms. By considering multiple potential diagnoses and evaluating
31
+ the likelihood of each, doctors can arrive at a more accurate diagnosis and develop
32
+ an effective treatment plan.
33
+ sentences:
34
+ - I've heard the term "differential diagnosis" before. What is the purpose of differential
35
+ diagnosis?
36
+ - Hello, I'm interested in learning about the various ways that diseases can be
37
+ treated. Can you tell me some common ways to treat disease?
38
+ - I was just wondering about what happens during a typical doctor's visit. What
39
+ kinds of medical devices are typically used in basic diagnostic procedures?
40
+ - source_sentence: Typically, individual governments establish legal, credentialing,
41
+ and financing frameworks to support health care systems. These frameworks help
42
+ to structure the way health care is delivered and accessed within a country.
43
+ sentences:
44
+ - That makes sense. I'm also curious about the frameworks themselves. What types
45
+ of frameworks are typically established by individual governments to support health
46
+ care systems?
47
+ - I see. Where is contemporary medicine generally conducted?
48
+ - That makes sense. I've been to the doctor's office a few times and I've seen them
49
+ use those devices. What is the role of physicians and physician assistants in
50
+ modern clinical practice?
51
+ - source_sentence: The information gathered during a medical encounter is documented
52
+ in the medical record, which is a legal document in many jurisdictions. This record
53
+ contains all the relevant information about the patient's condition, treatment,
54
+ and medical history, and is used to guide future care and treatment decisions.
55
+ sentences:
56
+ - I see. I think I understand, but I'm a bit confused. Is there a more general term
57
+ for medical treatments that are used outside of scientific medicine?
58
+ - That makes sense. What types of medical information might you collect from a patient's
59
+ medical history?
60
+ - What happens to the information gathered during a medical encounter?
61
+ - source_sentence: Regional differences in culture and technology are significant
62
+ factors that contribute to variations in medical availability and clinical practice
63
+ around the world. These factors can shape the way healthcare is delivered, the
64
+ types of treatments that are available, and even the way patients interact with
65
+ healthcare professionals. It's fascinating to learn about these differences and
66
+ how they impact healthcare outcomes.
67
+ sentences:
68
+ - I see. I'm curious about the term "therapy" in the context of treating disease.
69
+ Can you explain what you understand by that term?
70
+ - Hi, I'm learning about medical interviews, and I'm a bit confused about the information
71
+ that's gathered about a patient's occupation and lifestyle. What information is
72
+ typically gathered during the interview?
73
+ - I see. I'm also interested in learning more about the variations in medical availability
74
+ and clinical practice around the world. What are some factors that contribute
75
+ to variations in medical availability and clinical practice around the world?
76
+ pipeline_tag: sentence-similarity
77
+ library_name: sentence-transformers
78
+ metrics:
79
+ - cosine_accuracy@1
80
+ - cosine_accuracy@3
81
+ - cosine_accuracy@5
82
+ - cosine_accuracy@10
83
+ - cosine_precision@1
84
+ - cosine_precision@3
85
+ - cosine_precision@5
86
+ - cosine_precision@10
87
+ - cosine_recall@1
88
+ - cosine_recall@3
89
+ - cosine_recall@5
90
+ - cosine_recall@10
91
+ - cosine_ndcg@10
92
+ - cosine_mrr@10
93
+ - cosine_map@100
94
+ model-index:
95
+ - name: ModernBERT Embed base Legal Matryoshka
96
+ results:
97
+ - task:
98
+ type: information-retrieval
99
+ name: Information Retrieval
100
+ dataset:
101
+ name: dim 768
102
+ type: dim_768
103
+ metrics:
104
+ - type: cosine_accuracy@1
105
+ value: 0.8333333333333334
106
+ name: Cosine Accuracy@1
107
+ - type: cosine_accuracy@3
108
+ value: 1.0
109
+ name: Cosine Accuracy@3
110
+ - type: cosine_accuracy@5
111
+ value: 1.0
112
+ name: Cosine Accuracy@5
113
+ - type: cosine_accuracy@10
114
+ value: 1.0
115
+ name: Cosine Accuracy@10
116
+ - type: cosine_precision@1
117
+ value: 0.8333333333333334
118
+ name: Cosine Precision@1
119
+ - type: cosine_precision@3
120
+ value: 0.3333333333333333
121
+ name: Cosine Precision@3
122
+ - type: cosine_precision@5
123
+ value: 0.19999999999999998
124
+ name: Cosine Precision@5
125
+ - type: cosine_precision@10
126
+ value: 0.09999999999999999
127
+ name: Cosine Precision@10
128
+ - type: cosine_recall@1
129
+ value: 0.8333333333333334
130
+ name: Cosine Recall@1
131
+ - type: cosine_recall@3
132
+ value: 1.0
133
+ name: Cosine Recall@3
134
+ - type: cosine_recall@5
135
+ value: 1.0
136
+ name: Cosine Recall@5
137
+ - type: cosine_recall@10
138
+ value: 1.0
139
+ name: Cosine Recall@10
140
+ - type: cosine_ndcg@10
141
+ value: 0.9384882922619097
142
+ name: Cosine Ndcg@10
143
+ - type: cosine_mrr@10
144
+ value: 0.9166666666666666
145
+ name: Cosine Mrr@10
146
+ - type: cosine_map@100
147
+ value: 0.9166666666666666
148
+ name: Cosine Map@100
149
+ - task:
150
+ type: information-retrieval
151
+ name: Information Retrieval
152
+ dataset:
153
+ name: dim 512
154
+ type: dim_512
155
+ metrics:
156
+ - type: cosine_accuracy@1
157
+ value: 1.0
158
+ name: Cosine Accuracy@1
159
+ - type: cosine_accuracy@3
160
+ value: 1.0
161
+ name: Cosine Accuracy@3
162
+ - type: cosine_accuracy@5
163
+ value: 1.0
164
+ name: Cosine Accuracy@5
165
+ - type: cosine_accuracy@10
166
+ value: 1.0
167
+ name: Cosine Accuracy@10
168
+ - type: cosine_precision@1
169
+ value: 1.0
170
+ name: Cosine Precision@1
171
+ - type: cosine_precision@3
172
+ value: 0.3333333333333333
173
+ name: Cosine Precision@3
174
+ - type: cosine_precision@5
175
+ value: 0.19999999999999998
176
+ name: Cosine Precision@5
177
+ - type: cosine_precision@10
178
+ value: 0.09999999999999999
179
+ name: Cosine Precision@10
180
+ - type: cosine_recall@1
181
+ value: 1.0
182
+ name: Cosine Recall@1
183
+ - type: cosine_recall@3
184
+ value: 1.0
185
+ name: Cosine Recall@3
186
+ - type: cosine_recall@5
187
+ value: 1.0
188
+ name: Cosine Recall@5
189
+ - type: cosine_recall@10
190
+ value: 1.0
191
+ name: Cosine Recall@10
192
+ - type: cosine_ndcg@10
193
+ value: 1.0
194
+ name: Cosine Ndcg@10
195
+ - type: cosine_mrr@10
196
+ value: 1.0
197
+ name: Cosine Mrr@10
198
+ - type: cosine_map@100
199
+ value: 1.0
200
+ name: Cosine Map@100
201
+ - task:
202
+ type: information-retrieval
203
+ name: Information Retrieval
204
+ dataset:
205
+ name: dim 256
206
+ type: dim_256
207
+ metrics:
208
+ - type: cosine_accuracy@1
209
+ value: 1.0
210
+ name: Cosine Accuracy@1
211
+ - type: cosine_accuracy@3
212
+ value: 1.0
213
+ name: Cosine Accuracy@3
214
+ - type: cosine_accuracy@5
215
+ value: 1.0
216
+ name: Cosine Accuracy@5
217
+ - type: cosine_accuracy@10
218
+ value: 1.0
219
+ name: Cosine Accuracy@10
220
+ - type: cosine_precision@1
221
+ value: 1.0
222
+ name: Cosine Precision@1
223
+ - type: cosine_precision@3
224
+ value: 0.3333333333333333
225
+ name: Cosine Precision@3
226
+ - type: cosine_precision@5
227
+ value: 0.19999999999999998
228
+ name: Cosine Precision@5
229
+ - type: cosine_precision@10
230
+ value: 0.09999999999999999
231
+ name: Cosine Precision@10
232
+ - type: cosine_recall@1
233
+ value: 1.0
234
+ name: Cosine Recall@1
235
+ - type: cosine_recall@3
236
+ value: 1.0
237
+ name: Cosine Recall@3
238
+ - type: cosine_recall@5
239
+ value: 1.0
240
+ name: Cosine Recall@5
241
+ - type: cosine_recall@10
242
+ value: 1.0
243
+ name: Cosine Recall@10
244
+ - type: cosine_ndcg@10
245
+ value: 1.0
246
+ name: Cosine Ndcg@10
247
+ - type: cosine_mrr@10
248
+ value: 1.0
249
+ name: Cosine Mrr@10
250
+ - type: cosine_map@100
251
+ value: 1.0
252
+ name: Cosine Map@100
253
+ - task:
254
+ type: information-retrieval
255
+ name: Information Retrieval
256
+ dataset:
257
+ name: dim 128
258
+ type: dim_128
259
+ metrics:
260
+ - type: cosine_accuracy@1
261
+ value: 0.8333333333333334
262
+ name: Cosine Accuracy@1
263
+ - type: cosine_accuracy@3
264
+ value: 1.0
265
+ name: Cosine Accuracy@3
266
+ - type: cosine_accuracy@5
267
+ value: 1.0
268
+ name: Cosine Accuracy@5
269
+ - type: cosine_accuracy@10
270
+ value: 1.0
271
+ name: Cosine Accuracy@10
272
+ - type: cosine_precision@1
273
+ value: 0.8333333333333334
274
+ name: Cosine Precision@1
275
+ - type: cosine_precision@3
276
+ value: 0.3333333333333333
277
+ name: Cosine Precision@3
278
+ - type: cosine_precision@5
279
+ value: 0.19999999999999998
280
+ name: Cosine Precision@5
281
+ - type: cosine_precision@10
282
+ value: 0.09999999999999999
283
+ name: Cosine Precision@10
284
+ - type: cosine_recall@1
285
+ value: 0.8333333333333334
286
+ name: Cosine Recall@1
287
+ - type: cosine_recall@3
288
+ value: 1.0
289
+ name: Cosine Recall@3
290
+ - type: cosine_recall@5
291
+ value: 1.0
292
+ name: Cosine Recall@5
293
+ - type: cosine_recall@10
294
+ value: 1.0
295
+ name: Cosine Recall@10
296
+ - type: cosine_ndcg@10
297
+ value: 0.9384882922619097
298
+ name: Cosine Ndcg@10
299
+ - type: cosine_mrr@10
300
+ value: 0.9166666666666666
301
+ name: Cosine Mrr@10
302
+ - type: cosine_map@100
303
+ value: 0.9166666666666666
304
+ name: Cosine Map@100
305
+ - task:
306
+ type: information-retrieval
307
+ name: Information Retrieval
308
+ dataset:
309
+ name: dim 64
310
+ type: dim_64
311
+ metrics:
312
+ - type: cosine_accuracy@1
313
+ value: 1.0
314
+ name: Cosine Accuracy@1
315
+ - type: cosine_accuracy@3
316
+ value: 1.0
317
+ name: Cosine Accuracy@3
318
+ - type: cosine_accuracy@5
319
+ value: 1.0
320
+ name: Cosine Accuracy@5
321
+ - type: cosine_accuracy@10
322
+ value: 1.0
323
+ name: Cosine Accuracy@10
324
+ - type: cosine_precision@1
325
+ value: 1.0
326
+ name: Cosine Precision@1
327
+ - type: cosine_precision@3
328
+ value: 0.3333333333333333
329
+ name: Cosine Precision@3
330
+ - type: cosine_precision@5
331
+ value: 0.19999999999999998
332
+ name: Cosine Precision@5
333
+ - type: cosine_precision@10
334
+ value: 0.09999999999999999
335
+ name: Cosine Precision@10
336
+ - type: cosine_recall@1
337
+ value: 1.0
338
+ name: Cosine Recall@1
339
+ - type: cosine_recall@3
340
+ value: 1.0
341
+ name: Cosine Recall@3
342
+ - type: cosine_recall@5
343
+ value: 1.0
344
+ name: Cosine Recall@5
345
+ - type: cosine_recall@10
346
+ value: 1.0
347
+ name: Cosine Recall@10
348
+ - type: cosine_ndcg@10
349
+ value: 1.0
350
+ name: Cosine Ndcg@10
351
+ - type: cosine_mrr@10
352
+ value: 1.0
353
+ name: Cosine Mrr@10
354
+ - type: cosine_map@100
355
+ value: 1.0
356
+ name: Cosine Map@100
357
+ ---
358
+
359
+ # ModernBERT Embed base Legal Matryoshka
360
+
361
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
362
+
363
+ ## Model Details
364
+
365
+ ### Model Description
366
+ - **Model Type:** Sentence Transformer
367
+ - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
368
+ - **Maximum Sequence Length:** 8192 tokens
369
+ - **Output Dimensionality:** 768 dimensions
370
+ - **Similarity Function:** Cosine Similarity
371
+ - **Training Dataset:**
372
+ - json
373
+ - **Language:** en
374
+ - **License:** apache-2.0
375
+
376
+ ### Model Sources
377
+
378
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
379
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
380
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
381
+
382
+ ### Full Model Architecture
383
+
384
+ ```
385
+ SentenceTransformer(
386
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
387
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
388
+ (2): Normalize()
389
+ )
390
+ ```
391
+
392
+ ## Usage
393
+
394
+ ### Direct Usage (Sentence Transformers)
395
+
396
+ First install the Sentence Transformers library:
397
+
398
+ ```bash
399
+ pip install -U sentence-transformers
400
+ ```
401
+
402
+ Then you can load this model and run inference.
403
+ ```python
404
+ from sentence_transformers import SentenceTransformer
405
+
406
+ # Download from the 🤗 Hub
407
+ model = SentenceTransformer("Jonuu/LawyerAI1")
408
+ # Run inference
409
+ sentences = [
410
+ "Regional differences in culture and technology are significant factors that contribute to variations in medical availability and clinical practice around the world. These factors can shape the way healthcare is delivered, the types of treatments that are available, and even the way patients interact with healthcare professionals. It's fascinating to learn about these differences and how they impact healthcare outcomes.",
411
+ "I see. I'm also interested in learning more about the variations in medical availability and clinical practice around the world. What are some factors that contribute to variations in medical availability and clinical practice around the world?",
412
+ "Hi, I'm learning about medical interviews, and I'm a bit confused about the information that's gathered about a patient's occupation and lifestyle. What information is typically gathered during the interview?",
413
+ ]
414
+ embeddings = model.encode(sentences)
415
+ print(embeddings.shape)
416
+ # [3, 768]
417
+
418
+ # Get the similarity scores for the embeddings
419
+ similarities = model.similarity(embeddings, embeddings)
420
+ print(similarities.shape)
421
+ # [3, 3]
422
+ ```
423
+
424
+ <!--
425
+ ### Direct Usage (Transformers)
426
+
427
+ <details><summary>Click to see the direct usage in Transformers</summary>
428
+
429
+ </details>
430
+ -->
431
+
432
+ <!--
433
+ ### Downstream Usage (Sentence Transformers)
434
+
435
+ You can finetune this model on your own dataset.
436
+
437
+ <details><summary>Click to expand</summary>
438
+
439
+ </details>
440
+ -->
441
+
442
+ <!--
443
+ ### Out-of-Scope Use
444
+
445
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
446
+ -->
447
+
448
+ ## Evaluation
449
+
450
+ ### Metrics
451
+
452
+ #### Information Retrieval
453
+
454
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
455
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
456
+
457
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
458
+ |:--------------------|:-----------|:--------|:--------|:-----------|:--------|
459
+ | cosine_accuracy@1 | 0.8333 | 1.0 | 1.0 | 0.8333 | 1.0 |
460
+ | cosine_accuracy@3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
461
+ | cosine_accuracy@5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
462
+ | cosine_accuracy@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
463
+ | cosine_precision@1 | 0.8333 | 1.0 | 1.0 | 0.8333 | 1.0 |
464
+ | cosine_precision@3 | 0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.3333 |
465
+ | cosine_precision@5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
466
+ | cosine_precision@10 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
467
+ | cosine_recall@1 | 0.8333 | 1.0 | 1.0 | 0.8333 | 1.0 |
468
+ | cosine_recall@3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
469
+ | cosine_recall@5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
470
+ | cosine_recall@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
471
+ | **cosine_ndcg@10** | **0.9385** | **1.0** | **1.0** | **0.9385** | **1.0** |
472
+ | cosine_mrr@10 | 0.9167 | 1.0 | 1.0 | 0.9167 | 1.0 |
473
+ | cosine_map@100 | 0.9167 | 1.0 | 1.0 | 0.9167 | 1.0 |
474
+
475
+ <!--
476
+ ## Bias, Risks and Limitations
477
+
478
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
479
+ -->
480
+
481
+ <!--
482
+ ### Recommendations
483
+
484
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
485
+ -->
486
+
487
+ ## Training Details
488
+
489
+ ### Training Dataset
490
+
491
+ #### json
492
+
493
+ * Dataset: json
494
+ * Size: 46 training samples
495
+ * Columns: <code>positive</code> and <code>anchor</code>
496
+ * Approximate statistics based on the first 46 samples:
497
+ | | positive | anchor |
498
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
499
+ | type | string | string |
500
+ | details | <ul><li>min: 37 tokens</li><li>mean: 71.26 tokens</li><li>max: 148 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 29.57 tokens</li><li>max: 47 tokens</li></ul> |
501
+ * Samples:
502
+ | positive | anchor |
503
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|
504
+ | <code>The characteristics of a health care system have a significant impact on the way medical care is provided. The structure, financing, and policies of a health care system can all influence the availability, accessibility, and quality of medical care.</code> | <code>That helps clarify things. How do the characteristics of a health care system impact the way medical care is provided?</code> |
505
+ | <code>Ancient philosophers and physicians applied treatments like bloodletting based on theoretical frameworks such as humorism, which attempted to explain the workings of the human body. These early theories were often influenced by cultural and philosophical beliefs, and they laid the groundwork for the development of modern medical science. It's interesting to see how our understanding of the human body has evolved over time, isn't it?</code> | <code>I'm curious about ancient philosophers and physicians. How did they approach medicine?</code> |
506
+ | <code>Quackery is an interesting topic. In the context of medicine, quackery refers to medical treatments that are used outside of scientific medicine, but have significant concerns related to ethics, safety, and efficacy. This means that these treatments are not necessarily supported by scientific evidence, and may even be harmful to patients.</code> | <code>I was reading about health and wellness, and I came across the term "quackery." What is quackery in the context of medicine?</code> |
507
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
508
+ ```json
509
+ {
510
+ "loss": "MultipleNegativesRankingLoss",
511
+ "matryoshka_dims": [
512
+ 768,
513
+ 512,
514
+ 256,
515
+ 128,
516
+ 64
517
+ ],
518
+ "matryoshka_weights": [
519
+ 1,
520
+ 1,
521
+ 1,
522
+ 1,
523
+ 1
524
+ ],
525
+ "n_dims_per_step": -1
526
+ }
527
+ ```
528
+
529
+ ### Training Hyperparameters
530
+ #### Non-Default Hyperparameters
531
+
532
+ - `eval_strategy`: epoch
533
+ - `per_device_train_batch_size`: 32
534
+ - `per_device_eval_batch_size`: 16
535
+ - `gradient_accumulation_steps`: 16
536
+ - `learning_rate`: 2e-05
537
+ - `num_train_epochs`: 4
538
+ - `lr_scheduler_type`: cosine
539
+ - `warmup_ratio`: 0.1
540
+ - `bf16`: True
541
+ - `tf32`: False
542
+ - `load_best_model_at_end`: True
543
+ - `optim`: adamw_torch_fused
544
+ - `batch_sampler`: no_duplicates
545
+
546
+ #### All Hyperparameters
547
+ <details><summary>Click to expand</summary>
548
+
549
+ - `overwrite_output_dir`: False
550
+ - `do_predict`: False
551
+ - `eval_strategy`: epoch
552
+ - `prediction_loss_only`: True
553
+ - `per_device_train_batch_size`: 32
554
+ - `per_device_eval_batch_size`: 16
555
+ - `per_gpu_train_batch_size`: None
556
+ - `per_gpu_eval_batch_size`: None
557
+ - `gradient_accumulation_steps`: 16
558
+ - `eval_accumulation_steps`: None
559
+ - `torch_empty_cache_steps`: None
560
+ - `learning_rate`: 2e-05
561
+ - `weight_decay`: 0.0
562
+ - `adam_beta1`: 0.9
563
+ - `adam_beta2`: 0.999
564
+ - `adam_epsilon`: 1e-08
565
+ - `max_grad_norm`: 1.0
566
+ - `num_train_epochs`: 4
567
+ - `max_steps`: -1
568
+ - `lr_scheduler_type`: cosine
569
+ - `lr_scheduler_kwargs`: {}
570
+ - `warmup_ratio`: 0.1
571
+ - `warmup_steps`: 0
572
+ - `log_level`: passive
573
+ - `log_level_replica`: warning
574
+ - `log_on_each_node`: True
575
+ - `logging_nan_inf_filter`: True
576
+ - `save_safetensors`: True
577
+ - `save_on_each_node`: False
578
+ - `save_only_model`: False
579
+ - `restore_callback_states_from_checkpoint`: False
580
+ - `no_cuda`: False
581
+ - `use_cpu`: False
582
+ - `use_mps_device`: False
583
+ - `seed`: 42
584
+ - `data_seed`: None
585
+ - `jit_mode_eval`: False
586
+ - `use_ipex`: False
587
+ - `bf16`: True
588
+ - `fp16`: False
589
+ - `fp16_opt_level`: O1
590
+ - `half_precision_backend`: auto
591
+ - `bf16_full_eval`: False
592
+ - `fp16_full_eval`: False
593
+ - `tf32`: False
594
+ - `local_rank`: 0
595
+ - `ddp_backend`: None
596
+ - `tpu_num_cores`: None
597
+ - `tpu_metrics_debug`: False
598
+ - `debug`: []
599
+ - `dataloader_drop_last`: False
600
+ - `dataloader_num_workers`: 0
601
+ - `dataloader_prefetch_factor`: None
602
+ - `past_index`: -1
603
+ - `disable_tqdm`: False
604
+ - `remove_unused_columns`: True
605
+ - `label_names`: None
606
+ - `load_best_model_at_end`: True
607
+ - `ignore_data_skip`: False
608
+ - `fsdp`: []
609
+ - `fsdp_min_num_params`: 0
610
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
611
+ - `fsdp_transformer_layer_cls_to_wrap`: None
612
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
613
+ - `deepspeed`: None
614
+ - `label_smoothing_factor`: 0.0
615
+ - `optim`: adamw_torch_fused
616
+ - `optim_args`: None
617
+ - `adafactor`: False
618
+ - `group_by_length`: False
619
+ - `length_column_name`: length
620
+ - `ddp_find_unused_parameters`: None
621
+ - `ddp_bucket_cap_mb`: None
622
+ - `ddp_broadcast_buffers`: False
623
+ - `dataloader_pin_memory`: True
624
+ - `dataloader_persistent_workers`: False
625
+ - `skip_memory_metrics`: True
626
+ - `use_legacy_prediction_loop`: False
627
+ - `push_to_hub`: False
628
+ - `resume_from_checkpoint`: None
629
+ - `hub_model_id`: None
630
+ - `hub_strategy`: every_save
631
+ - `hub_private_repo`: None
632
+ - `hub_always_push`: False
633
+ - `gradient_checkpointing`: False
634
+ - `gradient_checkpointing_kwargs`: None
635
+ - `include_inputs_for_metrics`: False
636
+ - `include_for_metrics`: []
637
+ - `eval_do_concat_batches`: True
638
+ - `fp16_backend`: auto
639
+ - `push_to_hub_model_id`: None
640
+ - `push_to_hub_organization`: None
641
+ - `mp_parameters`:
642
+ - `auto_find_batch_size`: False
643
+ - `full_determinism`: False
644
+ - `torchdynamo`: None
645
+ - `ray_scope`: last
646
+ - `ddp_timeout`: 1800
647
+ - `torch_compile`: False
648
+ - `torch_compile_backend`: None
649
+ - `torch_compile_mode`: None
650
+ - `dispatch_batches`: None
651
+ - `split_batches`: None
652
+ - `include_tokens_per_second`: False
653
+ - `include_num_input_tokens_seen`: False
654
+ - `neftune_noise_alpha`: None
655
+ - `optim_target_modules`: None
656
+ - `batch_eval_metrics`: False
657
+ - `eval_on_start`: False
658
+ - `use_liger_kernel`: False
659
+ - `eval_use_gather_object`: False
660
+ - `average_tokens_across_devices`: False
661
+ - `prompts`: None
662
+ - `batch_sampler`: no_duplicates
663
+ - `multi_dataset_batch_sampler`: proportional
664
+
665
+ </details>
666
+
667
+ ### Training Logs
668
+ | Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
669
+ |:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
670
+ | **1.0** | **1** | **0.9385** | **1.0** | **0.9385** | **0.9385** | **1.0** |
671
+ | 2.0 | 2 | 0.9385 | 1.0 | 1.0 | 0.9385 | 1.0 |
672
+ | 3.0 | 3 | 0.9385 | 1.0 | 1.0 | 0.9385 | 1.0 |
673
+ | 4.0 | 4 | 0.9385 | 1.0 | 1.0 | 0.9385 | 1.0 |
674
+
675
+ * The bold row denotes the saved checkpoint.
676
+
677
+ ### Framework Versions
678
+ - Python: 3.11.11
679
+ - Sentence Transformers: 3.4.1
680
+ - Transformers: 4.49.0
681
+ - PyTorch: 2.6.0+cu118
682
+ - Accelerate: 1.3.0
683
+ - Datasets: 3.3.2
684
+ - Tokenizers: 0.21.0
685
+
686
+ ## Citation
687
+
688
+ ### BibTeX
689
+
690
+ #### Sentence Transformers
691
+ ```bibtex
692
+ @inproceedings{reimers-2019-sentence-bert,
693
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
694
+ author = "Reimers, Nils and Gurevych, Iryna",
695
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
696
+ month = "11",
697
+ year = "2019",
698
+ publisher = "Association for Computational Linguistics",
699
+ url = "https://arxiv.org/abs/1908.10084",
700
+ }
701
+ ```
702
+
703
+ #### MatryoshkaLoss
704
+ ```bibtex
705
+ @misc{kusupati2024matryoshka,
706
+ title={Matryoshka Representation Learning},
707
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
708
+ year={2024},
709
+ eprint={2205.13147},
710
+ archivePrefix={arXiv},
711
+ primaryClass={cs.LG}
712
+ }
713
+ ```
714
+
715
+ #### MultipleNegativesRankingLoss
716
+ ```bibtex
717
+ @misc{henderson2017efficient,
718
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
719
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
720
+ year={2017},
721
+ eprint={1705.00652},
722
+ archivePrefix={arXiv},
723
+ primaryClass={cs.CL}
724
+ }
725
+ ```
726
+
727
+ <!--
728
+ ## Glossary
729
+
730
+ *Clearly define terms in order to be accessible across audiences.*
731
+ -->
732
+
733
+ <!--
734
+ ## Model Card Authors
735
+
736
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
737
+ -->
738
+
739
+ <!--
740
+ ## Model Card Contact
741
+
742
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
743
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nomic-ai/modernbert-embed-base",
3
+ "architectures": [
4
+ "ModernBertModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 50281,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "mean",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50282,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "gradient_checkpointing": false,
21
+ "hidden_activation": "gelu",
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 1152,
26
+ "layer_norm_eps": 1e-05,
27
+ "local_attention": 128,
28
+ "local_rope_theta": 10000.0,
29
+ "max_position_embeddings": 8192,
30
+ "mlp_bias": false,
31
+ "mlp_dropout": 0.0,
32
+ "model_type": "modernbert",
33
+ "norm_bias": false,
34
+ "norm_eps": 1e-05,
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 22,
37
+ "pad_token_id": 50283,
38
+ "position_embedding_type": "absolute",
39
+ "reference_compile": true,
40
+ "repad_logits_with_grad": false,
41
+ "sep_token_id": 50282,
42
+ "sparse_pred_ignore_index": -100,
43
+ "sparse_prediction": false,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.49.0",
46
+ "vocab_size": 50368
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69f22ccd1ee0971b6173678c4fcadd29a49a3f5b6b8a6927002418abe4bd5b9c
3
+ size 596070136
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 8192,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizer",
944
+ "unk_token": "[UNK]"
945
+ }