metadata
tags:
- computer-engineering
- llama-3
- 1b
- lora
- 8bit
license: llama3.2
license_link: https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE
base_model:
- meta-llama/Llama-3.2-1B
datasets:
- wikitext-2-raw-v1
- computer-engineering-corpus
Specialized 1B Parameter Model for Computer Engineering
Fine-tuned with LoRA on 8-bit quantized Llama-3-1B
🛠️ Technical Specifications
Architecture
Component | Specification |
---|---|
Base Model | Meta-Llama-3-1B |
Hidden Size | 2048 |
Layers | 16 |
Attention Heads | 32 |
Quantization | 8-bit via BitsAndBytes |
Fine-Tuning Method | LoRA (Low-Rank Adaptation) |
Tokenizer Vocabulary | 128,256 tokens |
Training Data
- Wikitext-2-raw-v1 (General knowledge)
- Custom computer engineering corpus:
- Hardware design principles
- Processor architectures
- Embedded systems documentation
Installation and usage
Option 1: From Hugging Face Hub (Recommended)
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "Irfanuruchi/Llama-3.2-1B-Computer-Engineering-LLM"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
use_fast=False # Required for proper Llama tokenization
)
prompt = "Explain the von Neumann architecture:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.1
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Option 2: Local Installation (Git LFS Required)
from transformers import AutoModelForCausalLM, AutoTokenizer
# Replace with your local path
model_path = "./Llama-3.2-1B-ComputerEngineeringLLM"
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
local_files_only=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_path,
use_fast=False, # Required for Llama tokenizer
local_files_only=True
)
Recomended Config
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.1
)
Licence complience
This model is governed by the Llama 3.2 Community License. Key requirements:
Non-commercial use only Attribution to Meta required Cannot be used to train other LLMs Attribution Notice: "Llama 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms, Inc."
Limitations
Specialized for computer engineering (general performance may vary) Occasional repetition in outputs Requires prompt engineering for optimal results Knowledge cutoff: January 2025
Citation
If using for academic research, please cite:
@misc{llama3.2-1b-eng-2025,
title = {Llama-3.2-1B-Computer-Engineering-LLM},
author = {Irfanuruchi},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/Irfanuruchi/Llama-3.2-1B-Computer-Engineering-LLM},
}