File size: 4,295 Bytes
e151d79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccde10f
e151d79
 
 
 
ccde10f
 
e151d79
ccde10f
e151d79
ccde10f
 
 
 
 
 
 
e151d79
 
 
ccde10f
 
e151d79
 
ccde10f
 
 
 
 
e151d79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f18a97
e151d79
 
 
 
 
 
 
 
 
6f18a97
e151d79
 
6f18a97
e151d79
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
tags:
- computer-engineering
- llama-3
- 1b
- lora
- 8bit
license: llama3.2
license_link: https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE
base_model:
- meta-llama/Llama-3.2-1B
datasets:
- wikitext-2-raw-v1
- computer-engineering-corpus
---

**Specialized 1B Parameter Model for Computer Engineering**  
*Fine-tuned with LoRA on 8-bit quantized Llama-3-1B*

<div align="center">
  <a href="https://github.com/IrfanUruchi/Llama-3.2-1B-ComputerEngineeringLLM">
    <img src="https://img.shields.io/badge/🔗_GitHub-Repo-181717?style=for-the-badge&logo=github" alt="GitHub">
  </a>
  <a href="https://huggingface.co/Irfanuruchi/Llama-3.2-1B-Computer-Engineering-LLM">
    <img src="https://img.shields.io/badge/🤗_HuggingFace-Model_Repo-FFD21F?style=for-the-badge" alt="HuggingFace">
  </a>
  <br>
  <img src="https://img.shields.io/badge/Model_Size-1B_parameters-blue" alt="Model Size">
  <img src="https://img.shields.io/badge/Quantization-8bit-green" alt="Quantization">
  <img src="https://img.shields.io/badge/Adapter-LoRA-orange" alt="Adapter">
  <img src="https://img.shields.io/badge/Context-8k-lightgrey" alt="Context">
</div>

---

## 🛠️ Technical Specifications

### Architecture
| Component              | Specification                   |
|------------------------|---------------------------------|
| Base Model             | Meta-Llama-3-1B                |
| Hidden Size            | 2048                           |
| Layers                 | 16                             |
| Attention Heads        | 32                             |
| Quantization           | 8-bit via BitsAndBytes         |
| Fine-Tuning Method     | LoRA (Low-Rank Adaptation)     |
| Tokenizer Vocabulary   | 128,256 tokens                 |


### Training Data
- Wikitext-2-raw-v1 (General knowledge)
- Custom computer engineering corpus:
  - Hardware design principles
  - Processor architectures
  - Embedded systems documentation

---

## Installation and usage


### Option 1: From Hugging Face Hub (Recommended)

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "Irfanuruchi/Llama-3.2-1B-Computer-Engineering-LLM"

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype="auto", 
    trust_remote_code=True
)

tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    use_fast=False  # Required for proper Llama tokenization
)

prompt = "Explain the von Neumann architecture:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)  

outputs = model.generate(
    **inputs,
    max_new_tokens=200,  
    temperature=0.7,     
    top_p=0.9,          
    do_sample=True,   
    repetition_penalty=1.1  
)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

### Option 2: Local Installation (Git LFS Required)


```python

from transformers import AutoModelForCausalLM, AutoTokenizer

# Replace with your local path
model_path = "./Llama-3.2-1B-ComputerEngineeringLLM"  

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    local_files_only=True
)
tokenizer = AutoTokenizer.from_pretrained(
    model_path,
    use_fast=False,  # Required for Llama tokenizer
    local_files_only=True
)
```

*Recomended Config*

```python
outputs = model.generate(
    **inputs,
    max_new_tokens=200,
    temperature=0.7, 
    top_p=0.9,     
    do_sample=True,
    repetition_penalty=1.1  
)
```

---


## Licence complience

This model is governed by the Llama 3.2 Community License. Key requirements:

Non-commercial use only
Attribution to Meta required
Cannot be used to train other LLMs
Attribution Notice:
"Llama 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms, Inc."

---


## Limitations

Specialized for computer engineering (general performance may vary)
Occasional repetition in outputs
Requires prompt engineering for optimal results
Knowledge cutoff: January 2025

---

## Citation


If using for academic research, please cite:

```bibtex
@misc{llama3.2-1b-eng-2025,
  title = {Llama-3.2-1B-Computer-Engineering-LLM},
  author = {Irfanuruchi},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/Irfanuruchi/Llama-3.2-1B-Computer-Engineering-LLM},
}
```