|
--- |
|
license: apache-2.0 |
|
pipeline_tag: image-text-to-text |
|
library_name: transformers |
|
paper: https://arxiv.org/abs/2409.03277 |
|
--- |
|
|
|
|
|
<p align="center"> |
|
<b><font size="6">ChartMoE</font></b> |
|
<p> |
|
<p align="center"> |
|
<b><font size="4">ICLR2025 Oral </font></b> |
|
<p> |
|
|
|
<div align="center"> |
|
<div style="display: inline-block; margin-right: 30px;"> |
|
|
|
[](https://arxiv.org/abs/2409.03277) |
|
</div> |
|
<div style="display: inline-block; margin-right: 30px;"> |
|
|
|
[](https://chartmoe.github.io/) |
|
</div> |
|
<div style="display: inline-block; margin-right: 30px;"> |
|
|
|
[](https://github.com/IDEA-FinAI/ChartMoE) |
|
</div> |
|
<div style="display: inline-block; margin-right: 30px;"> |
|
|
|
[](https://huggingface.co/datasets/Coobiw/ChartMoE-Data) |
|
</div> |
|
</div> |
|
|
|
|
|
 |
|
|
|
**ChartMoE** is a multimodal large language model with Mixture-of-Expert connector, based on [InternLM-XComposer2](https://github.com/InternLM/InternLM-XComposer/tree/main/InternLM-XComposer-2.0) for advanced chart 1)understanding, 2)replot, 3)editing, 4)highlighting and 5)transformation. |
|
|
|
|
|
## Import from Transformers |
|
To load the ChartMoE model using Transformers, use the following code: |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
ckpt_path = "IDEA-FinAI/chartmoe" |
|
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(ckpt_path, trust_remote_code=True).half().cuda().eval() |
|
``` |
|
|
|
## Quickstart & Gradio Demo |
|
We provide a simple example and a gradio webui demo to show how to use ChartMoE. Please refer to [https://github.com/IDEA-FinAI/ChartMoE](https://github.com/IDEA-FinAI/ChartMoE). |
|
|
|
|
|
## Open Source License |
|
The code is licensed under Apache-2.0. |