--- license: apache-2.0 pipeline_tag: image-text-to-text library_name: transformers paper: https://arxiv.org/abs/2409.03277 ---

ChartMoE

ICLR2025 Oral

[![arXiv](https://img.shields.io/badge/ArXiv-Prepint-red)](https://arxiv.org/abs/2409.03277)
[![Project Page](https://img.shields.io/badge/Project-Page-brightgreen)](https://chartmoe.github.io/)
[![Github Repo](https://img.shields.io/badge/Github-Repo-blue)](https://github.com/IDEA-FinAI/ChartMoE)
[![Hugging Face Dataset](https://img.shields.io/badge/Hugging%20Face-Dataset-8A2BE2)](https://huggingface.co/datasets/Coobiw/ChartMoE-Data)
![](teaser.png) **ChartMoE** is a multimodal large language model with Mixture-of-Expert connector, based on [InternLM-XComposer2](https://github.com/InternLM/InternLM-XComposer/tree/main/InternLM-XComposer-2.0) for advanced chart 1)understanding, 2)replot, 3)editing, 4)highlighting and 5)transformation. ## Import from Transformers To load the ChartMoE model using Transformers, use the following code: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM ckpt_path = "IDEA-FinAI/chartmoe" tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(ckpt_path, trust_remote_code=True).half().cuda().eval() ``` ## Quickstart & Gradio Demo We provide a simple example and a gradio webui demo to show how to use ChartMoE. Please refer to [https://github.com/IDEA-FinAI/ChartMoE](https://github.com/IDEA-FinAI/ChartMoE). ## Open Source License The code is licensed under Apache-2.0.