|
--- |
|
base_model: VietAI/vit5-base |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- sacrebleu |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: BaViT_Base_Finetune_v0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BaViT_Base_Finetune_v0 |
|
|
|
This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4516 |
|
- Sacrebleu: 7.9929 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 100 |
|
- eval_batch_size: 100 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:| |
|
| 0.6988 | 1.0 | 468 | 0.6266 | 2.2994 | |
|
| 0.6014 | 2.0 | 936 | 0.5592 | 4.0780 | |
|
| 0.5548 | 3.0 | 1404 | 0.5231 | 4.9356 | |
|
| 0.5239 | 4.0 | 1872 | 0.5022 | 5.6738 | |
|
| 0.5063 | 5.0 | 2340 | 0.4875 | 6.2733 | |
|
| 0.4849 | 6.0 | 2808 | 0.4769 | 6.7126 | |
|
| 0.4701 | 7.0 | 3276 | 0.4705 | 6.9856 | |
|
| 0.4555 | 8.0 | 3744 | 0.4651 | 7.2721 | |
|
| 0.4524 | 9.0 | 4212 | 0.4601 | 7.5539 | |
|
| 0.4388 | 10.0 | 4680 | 0.4571 | 7.6076 | |
|
| 0.4341 | 11.0 | 5148 | 0.4549 | 7.7267 | |
|
| 0.4231 | 12.0 | 5616 | 0.4536 | 7.9165 | |
|
| 0.4174 | 13.0 | 6084 | 0.4519 | 7.9585 | |
|
| 0.4209 | 14.0 | 6552 | 0.4515 | 7.9864 | |
|
| 0.4167 | 15.0 | 7020 | 0.4516 | 7.9929 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|