--- base_model: VietAI/vit5-base library_name: transformers license: mit metrics: - sacrebleu tags: - generated_from_trainer model-index: - name: BaViT_Base_Finetune_v0 results: [] --- # BaViT_Base_Finetune_v0 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4516 - Sacrebleu: 7.9929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 100 - eval_batch_size: 100 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 0.6988 | 1.0 | 468 | 0.6266 | 2.2994 | | 0.6014 | 2.0 | 936 | 0.5592 | 4.0780 | | 0.5548 | 3.0 | 1404 | 0.5231 | 4.9356 | | 0.5239 | 4.0 | 1872 | 0.5022 | 5.6738 | | 0.5063 | 5.0 | 2340 | 0.4875 | 6.2733 | | 0.4849 | 6.0 | 2808 | 0.4769 | 6.7126 | | 0.4701 | 7.0 | 3276 | 0.4705 | 6.9856 | | 0.4555 | 8.0 | 3744 | 0.4651 | 7.2721 | | 0.4524 | 9.0 | 4212 | 0.4601 | 7.5539 | | 0.4388 | 10.0 | 4680 | 0.4571 | 7.6076 | | 0.4341 | 11.0 | 5148 | 0.4549 | 7.7267 | | 0.4231 | 12.0 | 5616 | 0.4536 | 7.9165 | | 0.4174 | 13.0 | 6084 | 0.4519 | 7.9585 | | 0.4209 | 14.0 | 6552 | 0.4515 | 7.9864 | | 0.4167 | 15.0 | 7020 | 0.4516 | 7.9929 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0