|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: IAmSkyDra/BARTBana |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- sacrebleu |
|
model-index: |
|
- name: BARTBana_Translation_v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BARTBana_Translation_v2 |
|
|
|
This model is a fine-tuned version of [IAmSkyDra/BARTBana](https://huggingface.co/IAmSkyDra/BARTBana) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4520 |
|
- Sacrebleu: 11.7352 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:| |
|
| 0.695 | 1.0 | 742 | 0.6021 | 6.3321 | |
|
| 0.5976 | 2.0 | 1484 | 0.5291 | 8.6429 | |
|
| 0.5171 | 3.0 | 2226 | 0.4958 | 9.7101 | |
|
| 0.4919 | 4.0 | 2968 | 0.4781 | 10.3323 | |
|
| 0.4556 | 5.0 | 3710 | 0.4680 | 10.7812 | |
|
| 0.4387 | 6.0 | 4452 | 0.4577 | 10.8965 | |
|
| 0.4095 | 7.0 | 5194 | 0.4538 | 11.1963 | |
|
| 0.3924 | 8.0 | 5936 | 0.4499 | 11.2119 | |
|
| 0.3815 | 9.0 | 6678 | 0.4486 | 11.4155 | |
|
| 0.3647 | 10.0 | 7420 | 0.4468 | 11.4443 | |
|
| 0.3525 | 11.0 | 8162 | 0.4479 | 11.5941 | |
|
| 0.3435 | 12.0 | 8904 | 0.4489 | 11.5933 | |
|
| 0.3349 | 13.0 | 9646 | 0.4500 | 11.7211 | |
|
| 0.3289 | 14.0 | 10388 | 0.4508 | 11.7113 | |
|
| 0.3202 | 15.0 | 11130 | 0.4520 | 11.7352 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|