File size: 2,414 Bytes
b0dab5b
 
 
8424b5f
b0dab5b
 
8424b5f
 
b0dab5b
8424b5f
b0dab5b
 
 
 
 
 
8424b5f
b0dab5b
8424b5f
b0dab5b
8424b5f
 
b0dab5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8424b5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0dab5b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: mit
base_model: IAmSkyDra/BARTBana
tags:
- generated_from_trainer
metrics:
- sacrebleu
model-index:
- name: BARTBana_Translation_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BARTBana_Translation_v2

This model is a fine-tuned version of [IAmSkyDra/BARTBana](https://huggingface.co/IAmSkyDra/BARTBana) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4520
- Sacrebleu: 11.7352

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Sacrebleu |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|
| 0.695         | 1.0   | 742   | 0.6021          | 6.3321    |
| 0.5976        | 2.0   | 1484  | 0.5291          | 8.6429    |
| 0.5171        | 3.0   | 2226  | 0.4958          | 9.7101    |
| 0.4919        | 4.0   | 2968  | 0.4781          | 10.3323   |
| 0.4556        | 5.0   | 3710  | 0.4680          | 10.7812   |
| 0.4387        | 6.0   | 4452  | 0.4577          | 10.8965   |
| 0.4095        | 7.0   | 5194  | 0.4538          | 11.1963   |
| 0.3924        | 8.0   | 5936  | 0.4499          | 11.2119   |
| 0.3815        | 9.0   | 6678  | 0.4486          | 11.4155   |
| 0.3647        | 10.0  | 7420  | 0.4468          | 11.4443   |
| 0.3525        | 11.0  | 8162  | 0.4479          | 11.5941   |
| 0.3435        | 12.0  | 8904  | 0.4489          | 11.5933   |
| 0.3349        | 13.0  | 9646  | 0.4500          | 11.7211   |
| 0.3289        | 14.0  | 10388 | 0.4508          | 11.7113   |
| 0.3202        | 15.0  | 11130 | 0.4520          | 11.7352   |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0