|
--- |
|
base_model: vinai/bartpho-syllable |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- sacrebleu |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: BARTBana_Translation_v00 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BARTBana_Translation_v00 |
|
|
|
This model is a fine-tuned version of [vinai/bartpho-syllable](https://huggingface.co/vinai/bartpho-syllable) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6020 |
|
- Sacrebleu: 7.9509 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:| |
|
| 1.2433 | 1.0 | 742 | 0.8630 | 0.8963 | |
|
| 1.0005 | 2.0 | 1484 | 0.8077 | 1.7612 | |
|
| 0.9144 | 3.0 | 2226 | 0.7620 | 2.8192 | |
|
| 0.8945 | 4.0 | 2968 | 0.7246 | 3.6968 | |
|
| 0.8435 | 5.0 | 3710 | 0.6943 | 4.8346 | |
|
| 0.8251 | 6.0 | 4452 | 0.6687 | 5.5850 | |
|
| 0.7872 | 7.0 | 5194 | 0.6513 | 6.1145 | |
|
| 0.7674 | 8.0 | 5936 | 0.6385 | 6.5998 | |
|
| 0.76 | 9.0 | 6678 | 0.6263 | 7.0741 | |
|
| 0.7407 | 10.0 | 7420 | 0.6198 | 7.3214 | |
|
| 0.7301 | 11.0 | 8162 | 0.6100 | 7.5060 | |
|
| 0.7294 | 12.0 | 8904 | 0.6077 | 7.6978 | |
|
| 0.7174 | 13.0 | 9646 | 0.6032 | 7.8715 | |
|
| 0.7131 | 14.0 | 10388 | 0.6020 | 7.9509 | |
|
| 0.7028 | 15.0 | 11130 | 0.6015 | 7.9382 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|