File size: 2,427 Bytes
ec15925
0b702ee
ec15925
 
 
 
0b702ee
 
ec15925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
base_model: vinai/bartpho-syllable
library_name: transformers
license: mit
metrics:
- sacrebleu
tags:
- generated_from_trainer
model-index:
- name: BARTBana_Translation_v00
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BARTBana_Translation_v00

This model is a fine-tuned version of [vinai/bartpho-syllable](https://huggingface.co/vinai/bartpho-syllable) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6020
- Sacrebleu: 7.9509

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Sacrebleu |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|
| 1.2433        | 1.0   | 742   | 0.8630          | 0.8963    |
| 1.0005        | 2.0   | 1484  | 0.8077          | 1.7612    |
| 0.9144        | 3.0   | 2226  | 0.7620          | 2.8192    |
| 0.8945        | 4.0   | 2968  | 0.7246          | 3.6968    |
| 0.8435        | 5.0   | 3710  | 0.6943          | 4.8346    |
| 0.8251        | 6.0   | 4452  | 0.6687          | 5.5850    |
| 0.7872        | 7.0   | 5194  | 0.6513          | 6.1145    |
| 0.7674        | 8.0   | 5936  | 0.6385          | 6.5998    |
| 0.76          | 9.0   | 6678  | 0.6263          | 7.0741    |
| 0.7407        | 10.0  | 7420  | 0.6198          | 7.3214    |
| 0.7301        | 11.0  | 8162  | 0.6100          | 7.5060    |
| 0.7294        | 12.0  | 8904  | 0.6077          | 7.6978    |
| 0.7174        | 13.0  | 9646  | 0.6032          | 7.8715    |
| 0.7131        | 14.0  | 10388 | 0.6020          | 7.9509    |
| 0.7028        | 15.0  | 11130 | 0.6015          | 7.9382    |


### Framework versions

- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0