fed-lora / examples /NLG /src /gpt2_decode.py
FZH1996
update fed-lora
e7d695a
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
# python -m torch.distributed.launch --nproc_per_node=1 src/gpt2_beam.py \
# --data ./data/e2e/test.jsonl \
# --batch_size 1 \
# --seq_len 512 \
# --eval_len 64 \
# --model_card gpt2.md \
# --platform local \
# --beam 10 \
# --length_penalty 0.8 \
# --no_repeat_ngram_size 4 \
# --repetition_penalty 1.0 \
# --eos_token_id 628 \
# --lora_dim 4 \
# --lora_alpha 32 \
# --work_dir ./trained_models/GPT2_M/e2e \
# --output_file predict.26290.jsonl \
# --init_checkpoint ./trained_models/GPT2_M/e2e/model.26290.pt
import json
import numpy as np
import argparse
import os
import sys
import re
import json
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import encoder
parser = argparse.ArgumentParser()
parser.add_argument('--vocab', type=str, default=None, help='vocab path')
parser.add_argument('--sample_file', default=None, type=str, help='ft sample file')
parser.add_argument('--input_file', default=None, type=str, help='ft input file')
parser.add_argument('--output_ref_file', default=None, type=str, help='output reference file')
parser.add_argument('--output_pred_file', default=None, type=str, help='output predicion file')
parser.add_argument('--ref_unique_file', default=None, type=str, help='reference unique id file')
parser.add_argument('--ref_type', default='e2e', choices=['e2e', 'webnlg', 'dart'],
help='e2e style reference type; webnlg style reference type.')
parser.add_argument('--ref_num', default=4, type=int, help='number of references.')
parser.add_argument('--tokenize', action='store_true', help='')
parser.add_argument('--lower', action='store_true', help='')
parser.add_argument('--filter', default='all', choices=['all', 'seen', 'unseen'],
help='for webnlg only, filter categories that are seen during training, unseen, or all')
args = parser.parse_args()
def stardard_tokenize(sent):
sent = ' '.join(re.split('(\W)', sent))
sent = sent.split()
sent = ' '.join(sent)
return sent
def post_process(sent, is_tokenize, is_lower):
if is_lower:
sent = sent.lower()
if is_tokenize:
sent = stardard_tokenize(sent)
return sent
if __name__ == "__main__":
enc = encoder.get_encoder(args.vocab)
ref_unique = None
if args.ref_unique_file is not None:
print('reading ref_unique_file.')
ref_unique = []
uniques = {}
with open(args.ref_unique_file, 'r') as ref_unique_reader:
for line in ref_unique_reader:
_id = int(line.strip())
ref_unique.append(_id)
uniques[_id] = 1
print('len refer dict', len(ref_unique), 'unique', len(uniques))
with open(args.sample_file, 'r') as sample_reader, \
open(args.input_file, 'r', encoding='utf8') as input_reader, \
open(args.output_pred_file, 'w', encoding='utf8') as pred_writer:
refer_dict = {}
context_list = []
line_id = 0
for line in input_reader:
items = json.loads(line.strip())
context = items['context']
completion = items['completion']
context_list.append(context)
keep = False
if args.filter == 'all':
keep = True
if args.filter == 'seen' and items['cate']:
keep = True
if args.filter == 'unseen' and not items['cate']:
keep = True
if ref_unique is None:
_key = context
else:
_key = ref_unique[line_id]
if keep:
if not _key in refer_dict:
refer_dict[_key] = {}
refer_dict[_key]['references'] = []
refer_dict[_key]['references'].append(completion.split('<|endoftext|>')[0].split('\n\n')[0].strip())
line_id += 1
if line_id==1000:
break
print('unique refer dict', len(refer_dict))
for line in sample_reader:
items = json.loads(line.strip())
_id = items['id']
_pred_tokens = items['predict']
if ref_unique is None:
_key = context_list[_id]
else:
_key = ref_unique[_id]
#assert _key in refer_dict
# if _key in refer_dict:
if not _key in refer_dict:
refer_dict[_key] = {}
refer_dict[_key]['sample'] = []
refer_dict[_key]['sample'] = enc.decode(_pred_tokens).split('<|endoftext|>')[0].split('\n\n')[0].strip()
references = [refer_dict[s]['references'] for s in refer_dict]
hypothesis = [refer_dict[s]['sample'] for s in refer_dict]
if args.ref_type == 'e2e':
with open(args.output_ref_file, 'w', encoding='utf8') as ref_writer:
for ref, hyp in zip(references, hypothesis):
for r in ref:
ref_writer.write(post_process(r, args.tokenize, args.lower) + '\n')
ref_writer.write('\n')
pred_writer.write(post_process(hyp, args.tokenize, args.lower) + '\n')
elif args.ref_type in ['webnlg', 'dart']:
if not os.path.exists(args.output_ref_file):
os.makedirs(args.output_ref_file)
reference_writers = [
open(os.path.join(args.output_ref_file, f'reference{fid}'), 'w', encoding='utf8')
for fid in range(0, args.ref_num)
]
for ref, hyp in zip(references, hypothesis):
for fid in range(0, args.ref_num):
if len(ref) > fid:
reference_writers[fid].write(post_process(ref[fid], args.tokenize, args.lower) + '\n')
else:
reference_writers[fid].write(post_process(ref[0], args.tokenize, args.lower) + '\n')
pred_writer.write(post_process(hyp, args.tokenize, args.lower) + '\n')
for writer in reference_writers:
writer.close()