# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ # python -m torch.distributed.launch --nproc_per_node=1 src/gpt2_beam.py \ # --data ./data/e2e/test.jsonl \ # --batch_size 1 \ # --seq_len 512 \ # --eval_len 64 \ # --model_card gpt2.md \ # --platform local \ # --beam 10 \ # --length_penalty 0.8 \ # --no_repeat_ngram_size 4 \ # --repetition_penalty 1.0 \ # --eos_token_id 628 \ # --lora_dim 4 \ # --lora_alpha 32 \ # --work_dir ./trained_models/GPT2_M/e2e \ # --output_file predict.26290.jsonl \ # --init_checkpoint ./trained_models/GPT2_M/e2e/model.26290.pt import json import numpy as np import argparse import os import sys import re import json import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import encoder parser = argparse.ArgumentParser() parser.add_argument('--vocab', type=str, default=None, help='vocab path') parser.add_argument('--sample_file', default=None, type=str, help='ft sample file') parser.add_argument('--input_file', default=None, type=str, help='ft input file') parser.add_argument('--output_ref_file', default=None, type=str, help='output reference file') parser.add_argument('--output_pred_file', default=None, type=str, help='output predicion file') parser.add_argument('--ref_unique_file', default=None, type=str, help='reference unique id file') parser.add_argument('--ref_type', default='e2e', choices=['e2e', 'webnlg', 'dart'], help='e2e style reference type; webnlg style reference type.') parser.add_argument('--ref_num', default=4, type=int, help='number of references.') parser.add_argument('--tokenize', action='store_true', help='') parser.add_argument('--lower', action='store_true', help='') parser.add_argument('--filter', default='all', choices=['all', 'seen', 'unseen'], help='for webnlg only, filter categories that are seen during training, unseen, or all') args = parser.parse_args() def stardard_tokenize(sent): sent = ' '.join(re.split('(\W)', sent)) sent = sent.split() sent = ' '.join(sent) return sent def post_process(sent, is_tokenize, is_lower): if is_lower: sent = sent.lower() if is_tokenize: sent = stardard_tokenize(sent) return sent if __name__ == "__main__": enc = encoder.get_encoder(args.vocab) ref_unique = None if args.ref_unique_file is not None: print('reading ref_unique_file.') ref_unique = [] uniques = {} with open(args.ref_unique_file, 'r') as ref_unique_reader: for line in ref_unique_reader: _id = int(line.strip()) ref_unique.append(_id) uniques[_id] = 1 print('len refer dict', len(ref_unique), 'unique', len(uniques)) with open(args.sample_file, 'r') as sample_reader, \ open(args.input_file, 'r', encoding='utf8') as input_reader, \ open(args.output_pred_file, 'w', encoding='utf8') as pred_writer: refer_dict = {} context_list = [] line_id = 0 for line in input_reader: items = json.loads(line.strip()) context = items['context'] completion = items['completion'] context_list.append(context) keep = False if args.filter == 'all': keep = True if args.filter == 'seen' and items['cate']: keep = True if args.filter == 'unseen' and not items['cate']: keep = True if ref_unique is None: _key = context else: _key = ref_unique[line_id] if keep: if not _key in refer_dict: refer_dict[_key] = {} refer_dict[_key]['references'] = [] refer_dict[_key]['references'].append(completion.split('<|endoftext|>')[0].split('\n\n')[0].strip()) line_id += 1 if line_id==1000: break print('unique refer dict', len(refer_dict)) for line in sample_reader: items = json.loads(line.strip()) _id = items['id'] _pred_tokens = items['predict'] if ref_unique is None: _key = context_list[_id] else: _key = ref_unique[_id] #assert _key in refer_dict # if _key in refer_dict: if not _key in refer_dict: refer_dict[_key] = {} refer_dict[_key]['sample'] = [] refer_dict[_key]['sample'] = enc.decode(_pred_tokens).split('<|endoftext|>')[0].split('\n\n')[0].strip() references = [refer_dict[s]['references'] for s in refer_dict] hypothesis = [refer_dict[s]['sample'] for s in refer_dict] if args.ref_type == 'e2e': with open(args.output_ref_file, 'w', encoding='utf8') as ref_writer: for ref, hyp in zip(references, hypothesis): for r in ref: ref_writer.write(post_process(r, args.tokenize, args.lower) + '\n') ref_writer.write('\n') pred_writer.write(post_process(hyp, args.tokenize, args.lower) + '\n') elif args.ref_type in ['webnlg', 'dart']: if not os.path.exists(args.output_ref_file): os.makedirs(args.output_ref_file) reference_writers = [ open(os.path.join(args.output_ref_file, f'reference{fid}'), 'w', encoding='utf8') for fid in range(0, args.ref_num) ] for ref, hyp in zip(references, hypothesis): for fid in range(0, args.ref_num): if len(ref) > fid: reference_writers[fid].write(post_process(ref[fid], args.tokenize, args.lower) + '\n') else: reference_writers[fid].write(post_process(ref[0], args.tokenize, args.lower) + '\n') pred_writer.write(post_process(hyp, args.tokenize, args.lower) + '\n') for writer in reference_writers: writer.close()