File size: 6,605 Bytes
e7d695a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#  ------------------------------------------------------------------------------------------
#  Copyright (c) Microsoft Corporation. All rights reserved.
#  Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
#  ------------------------------------------------------------------------------------------

# python -m torch.distributed.launch --nproc_per_node=1 src/gpt2_beam.py \
#     --data ./data/e2e/test.jsonl \
#     --batch_size 1 \
#     --seq_len 512 \
#     --eval_len 64 \
#     --model_card gpt2.md \
#     --platform local \
#     --beam 10 \
#     --length_penalty 0.8 \
#     --no_repeat_ngram_size 4 \
#     --repetition_penalty 1.0 \
#     --eos_token_id 628 \
#     --lora_dim 4 \
#     --lora_alpha 32 \
#     --work_dir ./trained_models/GPT2_M/e2e \
#     --output_file predict.26290.jsonl \
#     --init_checkpoint ./trained_models/GPT2_M/e2e/model.26290.pt


import json
import numpy as np
import argparse
import os
import sys
import re
import json

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data

import encoder


parser = argparse.ArgumentParser()

parser.add_argument('--vocab', type=str, default=None, help='vocab path')

parser.add_argument('--sample_file', default=None, type=str, help='ft sample file')
parser.add_argument('--input_file', default=None, type=str, help='ft input file')

parser.add_argument('--output_ref_file', default=None, type=str, help='output reference file')
parser.add_argument('--output_pred_file', default=None, type=str, help='output predicion file')

parser.add_argument('--ref_unique_file', default=None, type=str, help='reference unique id file')

parser.add_argument('--ref_type', default='e2e', choices=['e2e', 'webnlg', 'dart'], 
                    help='e2e style reference type; webnlg style reference type.')
parser.add_argument('--ref_num', default=4, type=int, help='number of references.')


parser.add_argument('--tokenize', action='store_true', help='')
parser.add_argument('--lower', action='store_true', help='')

parser.add_argument('--filter', default='all', choices=['all', 'seen', 'unseen'], 
                    help='for webnlg only, filter categories that are seen during training, unseen, or all')

args = parser.parse_args()


def stardard_tokenize(sent):
    sent = ' '.join(re.split('(\W)', sent))
    sent = sent.split()
    sent = ' '.join(sent)
    return sent


def post_process(sent, is_tokenize, is_lower):
    if is_lower:
        sent = sent.lower()
    if is_tokenize:
        sent = stardard_tokenize(sent)

    return sent


if __name__ == "__main__":
    enc = encoder.get_encoder(args.vocab)

    ref_unique = None

    if args.ref_unique_file is not None:
        print('reading ref_unique_file.')
        ref_unique = []
        uniques = {}
        with open(args.ref_unique_file, 'r') as ref_unique_reader:
            for line in ref_unique_reader:
                _id = int(line.strip())
                ref_unique.append(_id)
                uniques[_id] = 1
        print('len refer dict', len(ref_unique), 'unique', len(uniques))

    with open(args.sample_file, 'r') as sample_reader, \
             open(args.input_file, 'r', encoding='utf8') as input_reader, \
             open(args.output_pred_file, 'w', encoding='utf8') as pred_writer:

        refer_dict = {}
        context_list = []
        line_id = 0
        for line in input_reader:
            items = json.loads(line.strip())
            context = items['context']
            completion = items['completion']

            context_list.append(context)

            keep = False

            if args.filter == 'all':
                keep = True
            if args.filter == 'seen' and items['cate']: 
                keep = True
            if args.filter == 'unseen' and not items['cate']:
                keep = True

            if ref_unique is None:
                _key = context
            else:
                _key = ref_unique[line_id]

            if keep:
                if not _key in refer_dict:
                    refer_dict[_key] = {}
                    refer_dict[_key]['references'] = []
                refer_dict[_key]['references'].append(completion.split('<|endoftext|>')[0].split('\n\n')[0].strip())

            line_id += 1
            if line_id==1000:
                break

        print('unique refer dict', len(refer_dict))

        for line in sample_reader:
            items = json.loads(line.strip())
            _id = items['id']
            _pred_tokens = items['predict']

            if ref_unique is None:
                _key = context_list[_id]
            else:
                _key = ref_unique[_id]

            #assert _key in refer_dict
            # if _key in refer_dict:
            if not _key in refer_dict:
                refer_dict[_key] = {}
                refer_dict[_key]['sample'] = []
            refer_dict[_key]['sample'] = enc.decode(_pred_tokens).split('<|endoftext|>')[0].split('\n\n')[0].strip() 

        references = [refer_dict[s]['references'] for s in refer_dict]
        hypothesis = [refer_dict[s]['sample'] for s in refer_dict]

        if args.ref_type == 'e2e':
            with open(args.output_ref_file, 'w', encoding='utf8') as ref_writer:
                for ref, hyp in zip(references, hypothesis):
                    for r in ref:
                        ref_writer.write(post_process(r, args.tokenize, args.lower) + '\n')
                    ref_writer.write('\n')
                    pred_writer.write(post_process(hyp, args.tokenize, args.lower) + '\n')

        elif args.ref_type in ['webnlg', 'dart']:
            if not os.path.exists(args.output_ref_file):
                os.makedirs(args.output_ref_file)

            reference_writers = [
                open(os.path.join(args.output_ref_file, f'reference{fid}'), 'w', encoding='utf8') 
                for fid in range(0, args.ref_num)
            ] 
            
            for ref, hyp in zip(references, hypothesis):
                for fid in range(0, args.ref_num):
                    if len(ref) > fid:
                        reference_writers[fid].write(post_process(ref[fid], args.tokenize, args.lower) + '\n')
                    else:
                        reference_writers[fid].write(post_process(ref[0], args.tokenize, args.lower) + '\n')
                pred_writer.write(post_process(hyp, args.tokenize, args.lower) + '\n')
                    
            for writer in reference_writers:
                writer.close()