metadata
license: mit
MaskFormer-Germination
Fine-tuned MaskFormer for germination instance segmentation.
Details
- Base Model:
facebook/maskformer-swin-tiny-coco
- Classes: Normal (1), Abnormal (2) (mapped to COCO 134-class IDs)
- Training Data: 18 images, 31+ annotations per image
- Epochs: 5
- Final Loss: 1.655
- Batch Size: 2
- Learning Rate: 5e-5
- Steps: 45
- Runtime: ~26 minutes
Usage
from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProcessor
import torch
from PIL import Image
processor = MaskFormerImageProcessor.from_pretrained("your-username/maskformer-germination")
model = MaskFormerForInstanceSegmentation.from_pretrained("your-username/maskformer-germination")
model.eval()
image = Image.open("path/to/image.jpg")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
results = processor.post_process_instance_segmentation(outputs, target_sizes=[(image.height, image.width)])[0]
for score, label, mask in zip(results["scores"], results["labels"], results["masks"]):
if score > 0.5 and label in [1, 2]:
print(f"Label: {label}, Score: {score:.3f}, Mask shape: {mask.shape}")