Dreamy0 commited on
Commit
129b861
·
verified ·
1 Parent(s): 6c277f1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -3
README.md CHANGED
@@ -1,3 +1,35 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ # MaskFormer-Germination
5
+ Fine-tuned MaskFormer for germination instance segmentation.
6
+
7
+ ## Details
8
+ - **Base Model**: `facebook/maskformer-swin-tiny-coco`
9
+ - **Classes**: Normal (1), Abnormal (2) (mapped to COCO 134-class IDs)
10
+ - **Training Data**: 18 images, 31+ annotations per image
11
+ - **Epochs**: 5
12
+ - **Final Loss**: 1.655
13
+ - **Batch Size**: 2
14
+ - **Learning Rate**: 5e-5
15
+ - **Steps**: 45
16
+ - **Runtime**: ~26 minutes
17
+
18
+ ## Usage
19
+ ```python
20
+ from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProcessor
21
+ import torch
22
+ from PIL import Image
23
+
24
+ processor = MaskFormerImageProcessor.from_pretrained("your-username/maskformer-germination")
25
+ model = MaskFormerForInstanceSegmentation.from_pretrained("your-username/maskformer-germination")
26
+ model.eval()
27
+
28
+ image = Image.open("path/to/image.jpg")
29
+ inputs = processor(images=image, return_tensors="pt")
30
+ with torch.no_grad():
31
+ outputs = model(**inputs)
32
+ results = processor.post_process_instance_segmentation(outputs, target_sizes=[(image.height, image.width)])[0]
33
+ for score, label, mask in zip(results["scores"], results["labels"], results["masks"]):
34
+ if score > 0.5 and label in [1, 2]:
35
+ print(f"Label: {label}, Score: {score:.3f}, Mask shape: {mask.shape}")