whisper_new_ver2 / README.md
Curiousfox's picture
End of training
91c6b9e verified
metadata
library_name: transformers
language:
  - nan
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Hokkien-to-Tai Lo Whisper ver 2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.0
          type: mozilla-foundation/common_voice_16_1
          config: nan-tw
          split: test
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 137.93654416799816

Hokkien-to-Tai Lo Whisper ver 2

This model is a fine-tuned version of openai/whisper-small on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6832
  • Wer: 137.9365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.7216 0.2581 800 1.5008 134.0105
1.1329 0.5161 1600 1.0312 125.0399
0.9625 0.7742 2400 0.8906 127.3682
0.8124 1.0323 3200 0.7961 132.3214
0.7005 1.2903 4000 0.7438 127.8703
0.6735 1.5484 4800 0.7058 132.8920
0.632 1.8065 5600 0.6832 137.9365

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0