--- library_name: transformers language: - nan license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Hokkien-to-Tai Lo Whisper ver 2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: mozilla-foundation/common_voice_16_1 config: nan-tw split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 137.93654416799816 --- # Hokkien-to-Tai Lo Whisper ver 2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6832 - Wer: 137.9365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 5.7216 | 0.2581 | 800 | 1.5008 | 134.0105 | | 1.1329 | 0.5161 | 1600 | 1.0312 | 125.0399 | | 0.9625 | 0.7742 | 2400 | 0.8906 | 127.3682 | | 0.8124 | 1.0323 | 3200 | 0.7961 | 132.3214 | | 0.7005 | 1.2903 | 4000 | 0.7438 | 127.8703 | | 0.6735 | 1.5484 | 4800 | 0.7058 | 132.8920 | | 0.632 | 1.8065 | 5600 | 0.6832 | 137.9365 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0