File size: 1,927 Bytes
d68f4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb7114b
6d5100e
eb7114b
 
 
 
d68f4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb7114b
9ec2681
d68f4f1
 
6d5100e
 
d68f4f1
 
 
6d5100e
d68f4f1
 
 
 
 
eb7114b
 
 
d68f4f1
 
 
 
 
 
9ec2681
d68f4f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Climate-TwitterBERT-xmas
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Climate-TwitterBERT-xmas

This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3348
- Accuracy: 0.888
- Precision: 0.7843
- Recall: 0.7018
- F1-weighted: 0.8857
- F1: 0.7407

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-weighted | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----------:|:------:|
| 0.4411        | 3.64  | 50   | 0.3396          | 0.876    | 0.8611    | 0.5439 | 0.8652      | 0.6667 |
| 0.1872        | 7.27  | 100  | 0.3182          | 0.876    | 0.6912    | 0.8246 | 0.8796      | 0.7520 |
| 0.0724        | 10.91 | 150  | 0.3348          | 0.888    | 0.7843    | 0.7018 | 0.8857      | 0.7407 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.13.3