Commit
·
9ec2681
1
Parent(s):
b6634d0
update model card README.md
Browse files
README.md
CHANGED
@@ -19,12 +19,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Accuracy: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1-weighted: 0.
|
27 |
-
- F1: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -43,8 +43,8 @@ More information needed
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
-
- learning_rate: 0.
|
47 |
-
- train_batch_size:
|
48 |
- eval_batch_size: 2
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
@@ -56,46 +56,19 @@ The following hyperparameters were used during training:
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-weighted | F1 |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----------:|:------:|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
|
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.6148 | 1.03 | 450 | 0.6140 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
68 |
-
| 0.7454 | 1.14 | 500 | 0.7652 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
69 |
-
| 0.6223 | 1.26 | 550 | 0.5375 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
70 |
-
| 0.6466 | 1.37 | 600 | 1.0611 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
71 |
-
| 0.7892 | 1.48 | 650 | 0.7350 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
72 |
-
| 0.602 | 1.6 | 700 | 0.7024 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
73 |
-
| 0.8074 | 1.71 | 750 | 1.0565 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
74 |
-
| 0.8569 | 1.83 | 800 | 0.6465 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
75 |
-
| 0.6455 | 1.94 | 850 | 0.5401 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
76 |
-
| 0.6624 | 2.05 | 900 | 0.6494 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
77 |
-
| 0.5909 | 2.17 | 950 | 0.5444 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
78 |
-
| 0.5943 | 2.28 | 1000 | 0.7197 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
79 |
-
| 0.7885 | 2.4 | 1050 | 0.5382 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
80 |
-
| 0.6684 | 2.51 | 1100 | 0.5417 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
81 |
-
| 0.5723 | 2.63 | 1150 | 0.9149 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
82 |
-
| 0.747 | 2.74 | 1200 | 0.6202 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
83 |
-
| 0.6384 | 2.85 | 1250 | 0.5374 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
84 |
-
| 0.634 | 2.97 | 1300 | 0.6424 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
85 |
-
| 0.6256 | 3.08 | 1350 | 0.7462 | 0.228 | 0.228 | 1.0 | 0.0847 | 0.3713 |
|
86 |
-
| 0.6282 | 3.2 | 1400 | 0.5424 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
87 |
-
| 0.5496 | 3.31 | 1450 | 0.5402 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
88 |
-
| 0.5245 | 3.42 | 1500 | 0.5399 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
89 |
-
| 0.5226 | 3.54 | 1550 | 0.5699 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
90 |
-
| 0.6251 | 3.65 | 1600 | 0.5496 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
91 |
-
| 0.5547 | 3.77 | 1650 | 0.5435 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
92 |
-
| 0.532 | 3.88 | 1700 | 0.5381 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
93 |
-
| 0.6029 | 4.0 | 1750 | 0.5380 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
94 |
|
95 |
|
96 |
### Framework versions
|
97 |
|
98 |
- Transformers 4.28.1
|
99 |
- Pytorch 2.1.0+cu121
|
100 |
-
- Datasets 2.16.
|
101 |
- Tokenizers 0.13.3
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3965
|
23 |
+
- Accuracy: 0.808
|
24 |
+
- Precision: 0.5584
|
25 |
+
- Recall: 0.7544
|
26 |
+
- F1-weighted: 0.8171
|
27 |
+
- F1: 0.6418
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0001
|
47 |
+
- train_batch_size: 16
|
48 |
- eval_batch_size: 2
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-weighted | F1 |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----------:|:------:|
|
59 |
+
| 0.5425 | 0.45 | 50 | 0.5093 | 0.772 | 0.0 | 0.0 | 0.6727 | 0.0 |
|
60 |
+
| 0.5154 | 0.91 | 100 | 0.5244 | 0.796 | 0.875 | 0.1228 | 0.7306 | 0.2154 |
|
61 |
+
| 0.5635 | 1.36 | 150 | 0.4300 | 0.848 | 0.8065 | 0.4386 | 0.8303 | 0.5682 |
|
62 |
+
| 0.4215 | 1.82 | 200 | 0.3679 | 0.844 | 0.625 | 0.7895 | 0.8499 | 0.6977 |
|
63 |
+
| 0.3491 | 2.27 | 250 | 0.3679 | 0.864 | 0.7170 | 0.6667 | 0.8622 | 0.6909 |
|
64 |
+
| 0.4113 | 2.73 | 300 | 0.3658 | 0.848 | 0.6418 | 0.7544 | 0.8521 | 0.6935 |
|
65 |
+
| 0.398 | 3.18 | 350 | 0.3998 | 0.78 | 0.5119 | 0.7544 | 0.7928 | 0.6099 |
|
66 |
+
| 0.315 | 3.64 | 400 | 0.3965 | 0.808 | 0.5584 | 0.7544 | 0.8171 | 0.6418 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
### Framework versions
|
70 |
|
71 |
- Transformers 4.28.1
|
72 |
- Pytorch 2.1.0+cu121
|
73 |
+
- Datasets 2.16.1
|
74 |
- Tokenizers 0.13.3
|