Commit
·
d68f4f1
1
Parent(s):
491319c
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: Climate-TwitterBERT-xmas
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# Climate-TwitterBERT-xmas
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3488
|
23 |
+
- Accuracy: 0.9
|
24 |
+
- Precision: 0.7963
|
25 |
+
- Recall: 0.7544
|
26 |
+
- F1-weighted: 0.8990
|
27 |
+
- F1: 0.7748
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.05
|
53 |
+
- num_epochs: 4
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-weighted | F1 |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----------:|:------:|
|
59 |
+
| 0.5977 | 0.23 | 50 | 0.5488 | 0.772 | 0.5 | 0.0351 | 0.6867 | 0.0656 |
|
60 |
+
| 0.5246 | 0.46 | 100 | 0.4535 | 0.804 | 0.6053 | 0.4035 | 0.7890 | 0.4842 |
|
61 |
+
| 0.461 | 0.68 | 150 | 0.4056 | 0.832 | 0.8261 | 0.3333 | 0.8031 | 0.475 |
|
62 |
+
| 0.4096 | 0.91 | 200 | 0.3367 | 0.86 | 0.6897 | 0.7018 | 0.8604 | 0.6957 |
|
63 |
+
| 0.3217 | 1.14 | 250 | 0.3402 | 0.852 | 0.6562 | 0.7368 | 0.8549 | 0.6942 |
|
64 |
+
| 0.2896 | 1.37 | 300 | 0.3189 | 0.86 | 0.6964 | 0.6842 | 0.8596 | 0.6903 |
|
65 |
+
| 0.3433 | 1.6 | 350 | 0.3217 | 0.888 | 0.8372 | 0.6316 | 0.8821 | 0.72 |
|
66 |
+
| 0.3306 | 1.83 | 400 | 0.3117 | 0.876 | 0.7241 | 0.7368 | 0.8764 | 0.7304 |
|
67 |
+
| 0.2853 | 2.05 | 450 | 0.2913 | 0.876 | 0.7167 | 0.7544 | 0.8771 | 0.7350 |
|
68 |
+
| 0.2066 | 2.28 | 500 | 0.2879 | 0.904 | 0.8 | 0.7719 | 0.9034 | 0.7857 |
|
69 |
+
| 0.2382 | 2.51 | 550 | 0.2963 | 0.9 | 0.7857 | 0.7719 | 0.8997 | 0.7788 |
|
70 |
+
| 0.2293 | 2.74 | 600 | 0.3065 | 0.9 | 0.8478 | 0.6842 | 0.8960 | 0.7573 |
|
71 |
+
| 0.287 | 2.97 | 650 | 0.3184 | 0.912 | 0.8431 | 0.7544 | 0.9102 | 0.7963 |
|
72 |
+
| 0.1818 | 3.2 | 700 | 0.3442 | 0.912 | 0.8431 | 0.7544 | 0.9102 | 0.7963 |
|
73 |
+
| 0.186 | 3.42 | 750 | 0.3435 | 0.912 | 0.8431 | 0.7544 | 0.9102 | 0.7963 |
|
74 |
+
| 0.1409 | 3.65 | 800 | 0.3477 | 0.904 | 0.8113 | 0.7544 | 0.9027 | 0.7818 |
|
75 |
+
| 0.2049 | 3.88 | 850 | 0.3488 | 0.9 | 0.7963 | 0.7544 | 0.8990 | 0.7748 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.28.1
|
81 |
+
- Pytorch 2.1.0+cu121
|
82 |
+
- Datasets 2.16.0
|
83 |
+
- Tokenizers 0.13.3
|