File size: 1,927 Bytes
d68f4f1 eb7114b 6d5100e eb7114b d68f4f1 eb7114b 9ec2681 d68f4f1 6d5100e d68f4f1 6d5100e d68f4f1 eb7114b d68f4f1 9ec2681 d68f4f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Climate-TwitterBERT-xmas
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Climate-TwitterBERT-xmas
This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3348
- Accuracy: 0.888
- Precision: 0.7843
- Recall: 0.7018
- F1-weighted: 0.8857
- F1: 0.7407
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-weighted | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----------:|:------:|
| 0.4411 | 3.64 | 50 | 0.3396 | 0.876 | 0.8611 | 0.5439 | 0.8652 | 0.6667 |
| 0.1872 | 7.27 | 100 | 0.3182 | 0.876 | 0.6912 | 0.8246 | 0.8796 | 0.7520 |
| 0.0724 | 10.91 | 150 | 0.3348 | 0.888 | 0.7843 | 0.7018 | 0.8857 | 0.7407 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.13.3
|