Augusto777's picture
End of training
a4b5f2c verified
|
raw
history blame
4.41 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-RH
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6448598130841121

swinv2-tiny-patch4-window8-256-RH

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6681
  • Accuracy: 0.6449

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 8 4.5659 0.4112
4.5175 2.0 16 3.6362 0.4112
3.9284 3.0 24 1.6019 0.4112
1.6086 4.0 32 0.7110 0.4112
0.7392 5.0 40 0.6825 0.5888
0.7392 6.0 48 0.6795 0.5888
0.7073 7.0 56 0.6814 0.5888
0.6956 8.0 64 0.7061 0.5888
0.6898 9.0 72 0.7014 0.5888
0.7026 10.0 80 0.7214 0.4112
0.7026 11.0 88 0.7186 0.5888
0.7696 12.0 96 0.6837 0.5888
0.6909 13.0 104 0.6823 0.5888
0.6799 14.0 112 0.6781 0.5888
0.6782 15.0 120 0.6938 0.5888
0.6782 16.0 128 0.6766 0.5888
0.6952 17.0 136 0.7123 0.5888
0.6875 18.0 144 0.6891 0.5607
0.6919 19.0 152 0.7076 0.5888
0.6751 20.0 160 0.7011 0.4953
0.6751 21.0 168 0.6962 0.5888
0.689 22.0 176 0.6857 0.5701
0.6826 23.0 184 0.6935 0.5888
0.6841 24.0 192 0.7219 0.5888
0.6657 25.0 200 0.6610 0.5888
0.6657 26.0 208 0.6681 0.6449
0.6524 27.0 216 0.7225 0.5888
0.6567 28.0 224 0.7117 0.5888
0.6402 29.0 232 0.6999 0.6262
0.66 30.0 240 0.6799 0.6075
0.66 31.0 248 0.6677 0.6075
0.6469 32.0 256 0.6735 0.5981
0.6355 33.0 264 0.6853 0.6168
0.6245 34.0 272 0.7008 0.6262
0.6306 35.0 280 0.6990 0.5981
0.6306 36.0 288 0.6981 0.6355
0.6208 37.0 296 0.7103 0.6262
0.6339 38.0 304 0.7050 0.6355
0.5959 39.0 312 0.6989 0.6355
0.6059 40.0 320 0.6990 0.6355

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0