File size: 4,408 Bytes
a4b5f2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-RH
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6448598130841121
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-tiny-patch4-window8-256-RH
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6681
- Accuracy: 0.6449
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00015
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 8 | 4.5659 | 0.4112 |
| 4.5175 | 2.0 | 16 | 3.6362 | 0.4112 |
| 3.9284 | 3.0 | 24 | 1.6019 | 0.4112 |
| 1.6086 | 4.0 | 32 | 0.7110 | 0.4112 |
| 0.7392 | 5.0 | 40 | 0.6825 | 0.5888 |
| 0.7392 | 6.0 | 48 | 0.6795 | 0.5888 |
| 0.7073 | 7.0 | 56 | 0.6814 | 0.5888 |
| 0.6956 | 8.0 | 64 | 0.7061 | 0.5888 |
| 0.6898 | 9.0 | 72 | 0.7014 | 0.5888 |
| 0.7026 | 10.0 | 80 | 0.7214 | 0.4112 |
| 0.7026 | 11.0 | 88 | 0.7186 | 0.5888 |
| 0.7696 | 12.0 | 96 | 0.6837 | 0.5888 |
| 0.6909 | 13.0 | 104 | 0.6823 | 0.5888 |
| 0.6799 | 14.0 | 112 | 0.6781 | 0.5888 |
| 0.6782 | 15.0 | 120 | 0.6938 | 0.5888 |
| 0.6782 | 16.0 | 128 | 0.6766 | 0.5888 |
| 0.6952 | 17.0 | 136 | 0.7123 | 0.5888 |
| 0.6875 | 18.0 | 144 | 0.6891 | 0.5607 |
| 0.6919 | 19.0 | 152 | 0.7076 | 0.5888 |
| 0.6751 | 20.0 | 160 | 0.7011 | 0.4953 |
| 0.6751 | 21.0 | 168 | 0.6962 | 0.5888 |
| 0.689 | 22.0 | 176 | 0.6857 | 0.5701 |
| 0.6826 | 23.0 | 184 | 0.6935 | 0.5888 |
| 0.6841 | 24.0 | 192 | 0.7219 | 0.5888 |
| 0.6657 | 25.0 | 200 | 0.6610 | 0.5888 |
| 0.6657 | 26.0 | 208 | 0.6681 | 0.6449 |
| 0.6524 | 27.0 | 216 | 0.7225 | 0.5888 |
| 0.6567 | 28.0 | 224 | 0.7117 | 0.5888 |
| 0.6402 | 29.0 | 232 | 0.6999 | 0.6262 |
| 0.66 | 30.0 | 240 | 0.6799 | 0.6075 |
| 0.66 | 31.0 | 248 | 0.6677 | 0.6075 |
| 0.6469 | 32.0 | 256 | 0.6735 | 0.5981 |
| 0.6355 | 33.0 | 264 | 0.6853 | 0.6168 |
| 0.6245 | 34.0 | 272 | 0.7008 | 0.6262 |
| 0.6306 | 35.0 | 280 | 0.6990 | 0.5981 |
| 0.6306 | 36.0 | 288 | 0.6981 | 0.6355 |
| 0.6208 | 37.0 | 296 | 0.7103 | 0.6262 |
| 0.6339 | 38.0 | 304 | 0.7050 | 0.6355 |
| 0.5959 | 39.0 | 312 | 0.6989 | 0.6355 |
| 0.6059 | 40.0 | 320 | 0.6990 | 0.6355 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
|