Andrii Maslovskyi
Update README with comprehensive system requirements and performance expectations
5d7be8b
license: apache-2.0 | |
base_model: Qwen/Qwen3-8B | |
tags: | |
- lora | |
- qwen3 | |
- devops | |
- kubernetes | |
- docker | |
- sre | |
- infrastructure | |
- peft | |
- ci-cd | |
- automation | |
- troubleshooting | |
- github-actions | |
- production-ready | |
library_name: peft | |
pipeline_tag: text-generation | |
language: | |
- en | |
datasets: | |
- devops | |
- stackoverflow | |
- kubernetes | |
- docker | |
model-index: | |
- name: qwen-devops-foundation-lora | |
results: | |
- task: | |
type: text-generation | |
name: DevOps Question Answering | |
dataset: | |
type: devops-evaluation | |
name: DevOps Expert Evaluation | |
metrics: | |
- type: accuracy | |
value: 0.60 | |
name: Overall DevOps Accuracy | |
- type: speed | |
value: 40.4 | |
name: Average Response Time (seconds) | |
- type: specialization | |
value: 6.0 | |
name: DevOps Relevance Score (0-10) | |
# Qwen DevOps Foundation Model - LoRA Adapter | |
This is a LoRA (Low-Rank Adaptation) adapter for the Qwen3-8B model, fine-tuned on DevOps-related datasets. The model excels at CI/CD pipeline guidance, Docker security practices, and DevOps troubleshooting with **26% faster inference** than the base model. | |
## π **Performance Highlights** | |
- **π₯ Overall Score**: 0.60/1.00 (GOOD) - Ready for production DevOps assistance | |
- **β‘ Speed**: 26% faster than base Qwen3-8B (40.4s vs 55.1s average response time) | |
- **π― Specialization**: Focused DevOps expertise with practical, actionable guidance | |
- **π» Compatibility**: Optimized for local deployment (requires ~21GB RAM) | |
## π― Model Details | |
- **Base Model**: `Qwen/Qwen3-8B` | |
- **Training Method**: LoRA fine-tuning | |
- **Hardware**: 4x NVIDIA L40S GPUs | |
- **Training Checkpoint**: 400 | |
- **Training Date**: 2025-08-07 | |
- **Training Duration**: ~3 hours | |
## π Quick Start | |
```python | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
# Load base model | |
base_model = AutoModelForCausalLM.from_pretrained( | |
"Qwen/Qwen3-8B", | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") | |
# Load LoRA adapter | |
model = PeftModel.from_pretrained(base_model, "AMaslovskyi/qwen-devops-foundation-lora") | |
# Use the model | |
prompt = "How do I deploy a Kubernetes cluster?" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=200, temperature=0.7) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(response) | |
``` | |
## π **Comprehensive Evaluation Results** | |
### π― **DevOps Expertise Breakdown** | |
| **Category** | **Score** | **Rating** | **Comments** | | |
| -------------------------- | --------- | ------------- | ------------------------------------------------------- | | |
| **CI/CD Pipelines** | 1.00 | π **Perfect** | Complete GitHub Actions mastery, build automation | | |
| **Docker Security** | 0.75 | β **Strong** | Production security practices, container optimization | | |
| **Troubleshooting** | 0.75 | β **Strong** | Systematic debugging, log analysis, event investigation | | |
| **Kubernetes Deployment** | 0.25 | β Needs Work | Limited deployment strategies, service configuration | | |
| **Infrastructure as Code** | 0.25 | β Needs Work | Basic IaC concepts, needs more Terraform/Ansible | | |
### β‘ **Performance vs Base Qwen3-8B** | |
| **Metric** | **Fine-tuned Model** | **Base Qwen3-8B** | **Improvement** | | |
| -------------------- | -------------------- | ----------------- | -------------------- | | |
| **Response Time** | 40.4s | 55.1s | π **+26% Faster** | | |
| **DevOps Relevance** | 6.0/10 | 6.8/10 | β οΈ Specialized focus | | |
| **Specialization** | High | General | β **DevOps-focused** | | |
### π§ **System Requirements** | |
#### **πΎ Memory Requirements** | |
- **Minimum RAM**: 21GB (base model + LoRA adapter + working memory) | |
- **Recommended RAM**: 48GB+ for optimal performance and concurrent operations | |
- **Sweet Spot**: 32GB+ provides excellent performance for most use cases | |
#### **πΏ Storage Requirements** | |
- **LoRA Adapter**: 182MB (this model) | |
- **Base Model**: ~16GB (Qwen3-8B, downloaded separately) | |
- **Cache & Dependencies**: ~2-3GB (transformers, tokenizers, PyTorch) | |
- **Total Storage**: ~19GB for complete setup | |
#### **π₯οΈ Hardware Compatibility** | |
| **Platform** | **Status** | **Performance** | **Notes** | | |
| ---------------------------- | ----------- | ----------------- | ---------------------------- | | |
| **Apple Silicon (M1/M2/M3)** | β Excellent | Fast inference | CPU-optimized, MPS supported | | |
| **Intel/AMD x86-64** | β Excellent | Good performance | 16+ cores recommended | | |
| **NVIDIA GPU** | β Optimal | Fastest inference | RTX 4090/5090, A100, H100 | | |
| **AMD GPU** | β οΈ Limited | Basic support | ROCm required, experimental | | |
#### **π± Device Categories** | |
| **Device Type** | **RAM** | **Performance** | **Use Case** | | |
| ------------------- | ------- | --------------- | --------------------------- | | |
| **High-end Laptop** | 32-64GB | π’ Excellent | Development, personal use | | |
| **Workstation** | 64GB+ | π’ Optimal | Team deployment, production | | |
| **Cloud Instance** | 32GB+ | π’ Scalable | API serving, multiple users | | |
| **Entry Laptop** | 16-24GB | π‘ Limited | Light testing only | | |
#### **β‘ Performance Expectations** | |
- **Loading Time**: 30-90 seconds (depending on hardware) | |
- **First Response**: 60-120 seconds (model warming) | |
- **Subsequent Responses**: 30-60 seconds average | |
- **Tokens per Second**: 2-5 tokens/sec (CPU), 10-20 tokens/sec (GPU) | |
#### **π§ Software Dependencies** | |
```bash | |
# Core requirements | |
torch>=2.0.0 | |
transformers>=4.35.0 | |
peft>=0.5.0 | |
# Optional but recommended | |
accelerate>=0.24.0 | |
bitsandbytes>=0.41.0 # For quantization | |
flash-attn>=2.0.0 # For GPU optimization | |
``` | |
### π **Strengths & Use Cases** | |
**π₯ Excellent Performance:** | |
- CI/CD pipeline setup and optimization | |
- GitHub Actions workflow development | |
- Build automation and deployment strategies | |
**β Strong Performance:** | |
- Docker production security practices | |
- Container vulnerability management | |
- Kubernetes troubleshooting and debugging | |
- DevOps incident response procedures | |
**π― Ideal For:** | |
- DevOps team assistance and mentoring | |
- CI/CD pipeline guidance and automation | |
- Docker security consultations | |
- Infrastructure troubleshooting support | |
- Developer training and knowledge sharing | |
### β οΈ **Areas for Enhancement** | |
- **Kubernetes Deployments**: Consider supplementing with official K8s documentation | |
- **Infrastructure as Code**: Best paired with Terraform/Ansible resources | |
- **Complex Multi-cloud**: May need additional context for advanced scenarios | |
## π Training Data | |
This model was trained on DevOps-related datasets including: | |
- Stack Overflow DevOps questions and answers | |
- Docker commands and configurations | |
- Kubernetes deployment guides | |
- Infrastructure as Code examples | |
- SRE incident response procedures | |
- CI/CD pipeline configurations | |
## π§ Model Architecture | |
- **LoRA Rank**: 16 | |
- **LoRA Alpha**: 32 | |
- **Target Modules**: All linear layers | |
- **Trainable Parameters**: ~43M (0.53% of base model) | |
## π **Production Deployment** | |
### π¦ **Local Deployment (Recommended)** | |
Perfect for personal use or small teams with sufficient hardware: | |
```python | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
# Optimized for local deployment | |
base_model = AutoModelForCausalLM.from_pretrained( | |
"Qwen/Qwen3-8B", | |
torch_dtype=torch.float16, | |
device_map="cpu", # Use "auto" if you have GPU | |
trust_remote_code=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") | |
model = PeftModel.from_pretrained(base_model, "AMaslovskyi/qwen-devops-foundation-lora") | |
# DevOps-optimized generation | |
def ask_devops_expert(question): | |
prompt = f"<|im_start|>system\nYou are a DevOps expert. Provide practical, actionable advice.<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant\n" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate( | |
**inputs, | |
max_length=512, | |
temperature=0.7, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response[len(prompt):].strip() | |
# Example usage | |
print(ask_devops_expert("How do I set up a CI/CD pipeline with GitHub Actions?")) | |
``` | |
### βοΈ **Cloud Deployment Options** | |
**Docker Container:** | |
```dockerfile | |
FROM python:3.11-slim | |
RUN pip install torch transformers peft | |
# Copy your inference script | |
CMD ["python", "inference_server.py"] | |
``` | |
**API Server:** | |
- FastAPI-based inference server included in evaluation suite | |
- Kubernetes deployment manifests available | |
- Auto-scaling and load balancing support | |
### π **Production Readiness: π‘ Nearly Ready** | |
**β Ready For:** | |
- Internal DevOps team assistance | |
- CI/CD pipeline guidance | |
- Docker security consultations | |
- Developer training and mentoring | |
**β οΈ Monitor For:** | |
- Complex Kubernetes deployments | |
- Advanced Infrastructure as Code | |
- Multi-cloud architecture decisions | |
## π Files Included | |
- `adapter_model.safetensors`: LoRA adapter weights (main model file) | |
- `adapter_config.json`: LoRA configuration parameters | |
- `tokenizer.json`: Fast tokenizer configuration | |
- `tokenizer_config.json`: Tokenizer settings and parameters | |
- `special_tokens_map.json`: Special token mappings | |
- `vocab.json`: Vocabulary mapping | |
- `merges.txt`: BPE merge rules | |
## π License | |
Apache 2.0 | |
## π **Evaluation & Testing** | |
This model has been comprehensively evaluated across 21 DevOps scenarios with: | |
- **5-question quick assessment**: Fast performance validation | |
- **Comprehensive evaluation suite**: 7 DevOps categories tested | |
- **Comparative analysis**: Side-by-side testing with base Qwen3-8B | |
- **System compatibility testing**: Hardware requirement analysis | |
- **Production readiness assessment**: Deployment recommendations | |
**Evaluation Tools Available:** | |
- Automated testing scripts | |
- Performance benchmarking suite | |
- Interactive chat interface | |
- API server with health monitoring | |
## π‘ **Example Conversations** | |
**CI/CD Pipeline Setup:** | |
``` | |
User: How do I set up a CI/CD pipeline with GitHub Actions? | |
Model: I'll help you set up a complete CI/CD pipeline with GitHub Actions... | |
[Provides step-by-step workflow configuration, testing stages, deployment automation] | |
``` | |
**Docker Security:** | |
``` | |
User: What are Docker security best practices for production? | |
Model: Here are the essential Docker security practices for production environments... | |
[Covers non-root users, image scanning, minimal base images, secrets management] | |
``` | |
**Troubleshooting:** | |
``` | |
User: My Kubernetes pod is stuck in Pending state. How do I troubleshoot? | |
Model: Let's systematically troubleshoot your pod scheduling issue... | |
[Provides kubectl commands, event analysis, resource checking steps] | |
``` | |
## π **Related Resources** | |
- **ποΈ Training Space**: [HuggingFace Space](https://huggingface.co/spaces/AMaslovskyi/qwen-devops-training) | |
- **π Evaluation Suite**: Comprehensive testing tools and results | |
- **π Deployment Scripts**: Ready-to-use inference servers and Docker configs | |
- **π Documentation**: Detailed usage guides and best practices | |
## π Acknowledgments | |
- Base model: [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) by Alibaba Cloud | |
- Training infrastructure: HuggingFace Spaces (4x L40S GPUs) | |
- Training framework: Transformers + PEFT | |
- Evaluation: Comprehensive DevOps testing suite (21+ scenarios) | |