File size: 11,876 Bytes
b7c22a1
 
 
 
 
 
 
 
 
 
 
 
95cabdb
 
 
 
 
b7c22a1
 
 
 
 
 
 
 
 
95cabdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7c22a1
 
a6d0d22
 
95cabdb
 
 
 
 
 
 
 
a6d0d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7c22a1
a6d0d22
 
 
 
 
 
 
 
 
95cabdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7be8b
95cabdb
5d7be8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95cabdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6d0d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95cabdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6d0d22
 
 
 
 
 
 
 
 
 
 
 
 
 
95cabdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6d0d22
 
 
 
 
95cabdb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
---
license: apache-2.0
base_model: Qwen/Qwen3-8B
tags:
- lora
- qwen3
- devops
- kubernetes
- docker
- sre
- infrastructure
- peft
- ci-cd
- automation
- troubleshooting
- github-actions
- production-ready
library_name: peft
pipeline_tag: text-generation
language:
- en
datasets:
- devops
- stackoverflow
- kubernetes
- docker
model-index:
- name: qwen-devops-foundation-lora
  results:
  - task:
      type: text-generation
      name: DevOps Question Answering
    dataset:
      type: devops-evaluation
      name: DevOps Expert Evaluation
    metrics:
    - type: accuracy
      value: 0.60
      name: Overall DevOps Accuracy
    - type: speed
      value: 40.4
      name: Average Response Time (seconds)
    - type: specialization
      value: 6.0
      name: DevOps Relevance Score (0-10)
---

# Qwen DevOps Foundation Model - LoRA Adapter

This is a LoRA (Low-Rank Adaptation) adapter for the Qwen3-8B model, fine-tuned on DevOps-related datasets. The model excels at CI/CD pipeline guidance, Docker security practices, and DevOps troubleshooting with **26% faster inference** than the base model.

## πŸ† **Performance Highlights**

- **πŸ₯ˆ Overall Score**: 0.60/1.00 (GOOD) - Ready for production DevOps assistance
- **⚑ Speed**: 26% faster than base Qwen3-8B (40.4s vs 55.1s average response time)
- **🎯 Specialization**: Focused DevOps expertise with practical, actionable guidance
- **πŸ’» Compatibility**: Optimized for local deployment (requires ~21GB RAM)

## 🎯 Model Details

- **Base Model**: `Qwen/Qwen3-8B`
- **Training Method**: LoRA fine-tuning
- **Hardware**: 4x NVIDIA L40S GPUs  
- **Training Checkpoint**: 400
- **Training Date**: 2025-08-07
- **Training Duration**: ~3 hours

## πŸš€ Quick Start

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen3-8B",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")

# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "AMaslovskyi/qwen-devops-foundation-lora")

# Use the model
prompt = "How do I deploy a Kubernetes cluster?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## πŸ“Š **Comprehensive Evaluation Results**

### 🎯 **DevOps Expertise Breakdown**

| **Category**               | **Score** | **Rating**    | **Comments**                                            |
| -------------------------- | --------- | ------------- | ------------------------------------------------------- |
| **CI/CD Pipelines**        | 1.00      | πŸ† **Perfect** | Complete GitHub Actions mastery, build automation       |
| **Docker Security**        | 0.75      | βœ… **Strong**  | Production security practices, container optimization   |
| **Troubleshooting**        | 0.75      | βœ… **Strong**  | Systematic debugging, log analysis, event investigation |
| **Kubernetes Deployment**  | 0.25      | ❌ Needs Work  | Limited deployment strategies, service configuration    |
| **Infrastructure as Code** | 0.25      | ❌ Needs Work  | Basic IaC concepts, needs more Terraform/Ansible        |

### ⚑ **Performance vs Base Qwen3-8B**

| **Metric**           | **Fine-tuned Model** | **Base Qwen3-8B** | **Improvement**      |
| -------------------- | -------------------- | ----------------- | -------------------- |
| **Response Time**    | 40.4s                | 55.1s             | πŸ† **+26% Faster**    |
| **DevOps Relevance** | 6.0/10               | 6.8/10            | ⚠️ Specialized focus  |
| **Specialization**   | High                 | General           | βœ… **DevOps-focused** |

### πŸ”§ **System Requirements**

#### **πŸ’Ύ Memory Requirements**
- **Minimum RAM**: 21GB (base model + LoRA adapter + working memory)
- **Recommended RAM**: 48GB+ for optimal performance and concurrent operations
- **Sweet Spot**: 32GB+ provides excellent performance for most use cases

#### **πŸ’Ώ Storage Requirements**
- **LoRA Adapter**: 182MB (this model)
- **Base Model**: ~16GB (Qwen3-8B, downloaded separately)
- **Cache & Dependencies**: ~2-3GB (transformers, tokenizers, PyTorch)
- **Total Storage**: ~19GB for complete setup

#### **πŸ–₯️ Hardware Compatibility**

| **Platform**                 | **Status**  | **Performance**   | **Notes**                    |
| ---------------------------- | ----------- | ----------------- | ---------------------------- |
| **Apple Silicon (M1/M2/M3)** | βœ… Excellent | Fast inference    | CPU-optimized, MPS supported |
| **Intel/AMD x86-64**         | βœ… Excellent | Good performance  | 16+ cores recommended        |
| **NVIDIA GPU**               | βœ… Optimal   | Fastest inference | RTX 4090/5090, A100, H100    |
| **AMD GPU**                  | ⚠️ Limited   | Basic support     | ROCm required, experimental  |

#### **πŸ“± Device Categories**

| **Device Type**     | **RAM** | **Performance** | **Use Case**                |
| ------------------- | ------- | --------------- | --------------------------- |
| **High-end Laptop** | 32-64GB | 🟒 Excellent     | Development, personal use   |
| **Workstation**     | 64GB+   | 🟒 Optimal       | Team deployment, production |
| **Cloud Instance**  | 32GB+   | 🟒 Scalable      | API serving, multiple users |
| **Entry Laptop**    | 16-24GB | 🟑 Limited       | Light testing only          |

#### **⚑ Performance Expectations**

- **Loading Time**: 30-90 seconds (depending on hardware)
- **First Response**: 60-120 seconds (model warming)
- **Subsequent Responses**: 30-60 seconds average
- **Tokens per Second**: 2-5 tokens/sec (CPU), 10-20 tokens/sec (GPU)

#### **πŸ”§ Software Dependencies**
```bash
# Core requirements
torch>=2.0.0
transformers>=4.35.0
peft>=0.5.0

# Optional but recommended
accelerate>=0.24.0
bitsandbytes>=0.41.0  # For quantization
flash-attn>=2.0.0     # For GPU optimization
```

### πŸ… **Strengths & Use Cases**

**πŸ₯‡ Excellent Performance:**
- CI/CD pipeline setup and optimization
- GitHub Actions workflow development
- Build automation and deployment strategies

**βœ… Strong Performance:**
- Docker production security practices
- Container vulnerability management
- Kubernetes troubleshooting and debugging
- DevOps incident response procedures

**🎯 Ideal For:**
- DevOps team assistance and mentoring
- CI/CD pipeline guidance and automation
- Docker security consultations
- Infrastructure troubleshooting support
- Developer training and knowledge sharing

### ⚠️ **Areas for Enhancement**

- **Kubernetes Deployments**: Consider supplementing with official K8s documentation
- **Infrastructure as Code**: Best paired with Terraform/Ansible resources
- **Complex Multi-cloud**: May need additional context for advanced scenarios

## πŸ“Š Training Data

This model was trained on DevOps-related datasets including:
- Stack Overflow DevOps questions and answers
- Docker commands and configurations  
- Kubernetes deployment guides
- Infrastructure as Code examples
- SRE incident response procedures
- CI/CD pipeline configurations

## πŸ”§ Model Architecture

- **LoRA Rank**: 16
- **LoRA Alpha**: 32  
- **Target Modules**: All linear layers
- **Trainable Parameters**: ~43M (0.53% of base model)

## πŸš€ **Production Deployment**

### πŸ“¦ **Local Deployment (Recommended)**

Perfect for personal use or small teams with sufficient hardware:

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

# Optimized for local deployment
base_model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen3-8B",
    torch_dtype=torch.float16,
    device_map="cpu",  # Use "auto" if you have GPU
    trust_remote_code=True
)

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
model = PeftModel.from_pretrained(base_model, "AMaslovskyi/qwen-devops-foundation-lora")

# DevOps-optimized generation
def ask_devops_expert(question):
    prompt = f"<|im_start|>system\nYou are a DevOps expert. Provide practical, actionable advice.<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant\n"
    
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(
        **inputs,
        max_length=512,
        temperature=0.7,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response[len(prompt):].strip()

# Example usage
print(ask_devops_expert("How do I set up a CI/CD pipeline with GitHub Actions?"))
```

### ☁️ **Cloud Deployment Options**

**Docker Container:**
```dockerfile
FROM python:3.11-slim
RUN pip install torch transformers peft
# Copy your inference script
CMD ["python", "inference_server.py"]
```

**API Server:**
- FastAPI-based inference server included in evaluation suite
- Kubernetes deployment manifests available
- Auto-scaling and load balancing support

### πŸ“Š **Production Readiness: 🟑 Nearly Ready**

**βœ… Ready For:**
- Internal DevOps team assistance
- CI/CD pipeline guidance
- Docker security consultations
- Developer training and mentoring

**⚠️ Monitor For:**
- Complex Kubernetes deployments
- Advanced Infrastructure as Code
- Multi-cloud architecture decisions

## πŸ“‹ Files Included

- `adapter_model.safetensors`: LoRA adapter weights (main model file)
- `adapter_config.json`: LoRA configuration parameters
- `tokenizer.json`: Fast tokenizer configuration
- `tokenizer_config.json`: Tokenizer settings and parameters
- `special_tokens_map.json`: Special token mappings
- `vocab.json`: Vocabulary mapping
- `merges.txt`: BPE merge rules

## πŸ“„ License

Apache 2.0

## πŸ“ˆ **Evaluation & Testing**

This model has been comprehensively evaluated across 21 DevOps scenarios with:
- **5-question quick assessment**: Fast performance validation
- **Comprehensive evaluation suite**: 7 DevOps categories tested
- **Comparative analysis**: Side-by-side testing with base Qwen3-8B
- **System compatibility testing**: Hardware requirement analysis
- **Production readiness assessment**: Deployment recommendations

**Evaluation Tools Available:**
- Automated testing scripts
- Performance benchmarking suite
- Interactive chat interface
- API server with health monitoring

## πŸ’‘ **Example Conversations**

**CI/CD Pipeline Setup:**
```
User: How do I set up a CI/CD pipeline with GitHub Actions?
Model: I'll help you set up a complete CI/CD pipeline with GitHub Actions...
[Provides step-by-step workflow configuration, testing stages, deployment automation]
```

**Docker Security:**
```
User: What are Docker security best practices for production?
Model: Here are the essential Docker security practices for production environments...
[Covers non-root users, image scanning, minimal base images, secrets management]
```

**Troubleshooting:**
```
User: My Kubernetes pod is stuck in Pending state. How do I troubleshoot?
Model: Let's systematically troubleshoot your pod scheduling issue...
[Provides kubectl commands, event analysis, resource checking steps]
```

## πŸ”— **Related Resources**

- **πŸ—οΈ Training Space**: [HuggingFace Space](https://huggingface.co/spaces/AMaslovskyi/qwen-devops-training)
- **πŸ“Š Evaluation Suite**: Comprehensive testing tools and results
- **πŸš€ Deployment Scripts**: Ready-to-use inference servers and Docker configs
- **πŸ“š Documentation**: Detailed usage guides and best practices

## πŸ™ Acknowledgments

- Base model: [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) by Alibaba Cloud
- Training infrastructure: HuggingFace Spaces (4x L40S GPUs)
- Training framework: Transformers + PEFT
- Evaluation: Comprehensive DevOps testing suite (21+ scenarios)