File size: 11,876 Bytes
b7c22a1 95cabdb b7c22a1 95cabdb b7c22a1 a6d0d22 95cabdb a6d0d22 b7c22a1 a6d0d22 95cabdb 5d7be8b 95cabdb 5d7be8b 95cabdb a6d0d22 95cabdb a6d0d22 95cabdb a6d0d22 95cabdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
---
license: apache-2.0
base_model: Qwen/Qwen3-8B
tags:
- lora
- qwen3
- devops
- kubernetes
- docker
- sre
- infrastructure
- peft
- ci-cd
- automation
- troubleshooting
- github-actions
- production-ready
library_name: peft
pipeline_tag: text-generation
language:
- en
datasets:
- devops
- stackoverflow
- kubernetes
- docker
model-index:
- name: qwen-devops-foundation-lora
results:
- task:
type: text-generation
name: DevOps Question Answering
dataset:
type: devops-evaluation
name: DevOps Expert Evaluation
metrics:
- type: accuracy
value: 0.60
name: Overall DevOps Accuracy
- type: speed
value: 40.4
name: Average Response Time (seconds)
- type: specialization
value: 6.0
name: DevOps Relevance Score (0-10)
---
# Qwen DevOps Foundation Model - LoRA Adapter
This is a LoRA (Low-Rank Adaptation) adapter for the Qwen3-8B model, fine-tuned on DevOps-related datasets. The model excels at CI/CD pipeline guidance, Docker security practices, and DevOps troubleshooting with **26% faster inference** than the base model.
## π **Performance Highlights**
- **π₯ Overall Score**: 0.60/1.00 (GOOD) - Ready for production DevOps assistance
- **β‘ Speed**: 26% faster than base Qwen3-8B (40.4s vs 55.1s average response time)
- **π― Specialization**: Focused DevOps expertise with practical, actionable guidance
- **π» Compatibility**: Optimized for local deployment (requires ~21GB RAM)
## π― Model Details
- **Base Model**: `Qwen/Qwen3-8B`
- **Training Method**: LoRA fine-tuning
- **Hardware**: 4x NVIDIA L40S GPUs
- **Training Checkpoint**: 400
- **Training Date**: 2025-08-07
- **Training Duration**: ~3 hours
## π Quick Start
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-8B",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "AMaslovskyi/qwen-devops-foundation-lora")
# Use the model
prompt = "How do I deploy a Kubernetes cluster?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## π **Comprehensive Evaluation Results**
### π― **DevOps Expertise Breakdown**
| **Category** | **Score** | **Rating** | **Comments** |
| -------------------------- | --------- | ------------- | ------------------------------------------------------- |
| **CI/CD Pipelines** | 1.00 | π **Perfect** | Complete GitHub Actions mastery, build automation |
| **Docker Security** | 0.75 | β
**Strong** | Production security practices, container optimization |
| **Troubleshooting** | 0.75 | β
**Strong** | Systematic debugging, log analysis, event investigation |
| **Kubernetes Deployment** | 0.25 | β Needs Work | Limited deployment strategies, service configuration |
| **Infrastructure as Code** | 0.25 | β Needs Work | Basic IaC concepts, needs more Terraform/Ansible |
### β‘ **Performance vs Base Qwen3-8B**
| **Metric** | **Fine-tuned Model** | **Base Qwen3-8B** | **Improvement** |
| -------------------- | -------------------- | ----------------- | -------------------- |
| **Response Time** | 40.4s | 55.1s | π **+26% Faster** |
| **DevOps Relevance** | 6.0/10 | 6.8/10 | β οΈ Specialized focus |
| **Specialization** | High | General | β
**DevOps-focused** |
### π§ **System Requirements**
#### **πΎ Memory Requirements**
- **Minimum RAM**: 21GB (base model + LoRA adapter + working memory)
- **Recommended RAM**: 48GB+ for optimal performance and concurrent operations
- **Sweet Spot**: 32GB+ provides excellent performance for most use cases
#### **πΏ Storage Requirements**
- **LoRA Adapter**: 182MB (this model)
- **Base Model**: ~16GB (Qwen3-8B, downloaded separately)
- **Cache & Dependencies**: ~2-3GB (transformers, tokenizers, PyTorch)
- **Total Storage**: ~19GB for complete setup
#### **π₯οΈ Hardware Compatibility**
| **Platform** | **Status** | **Performance** | **Notes** |
| ---------------------------- | ----------- | ----------------- | ---------------------------- |
| **Apple Silicon (M1/M2/M3)** | β
Excellent | Fast inference | CPU-optimized, MPS supported |
| **Intel/AMD x86-64** | β
Excellent | Good performance | 16+ cores recommended |
| **NVIDIA GPU** | β
Optimal | Fastest inference | RTX 4090/5090, A100, H100 |
| **AMD GPU** | β οΈ Limited | Basic support | ROCm required, experimental |
#### **π± Device Categories**
| **Device Type** | **RAM** | **Performance** | **Use Case** |
| ------------------- | ------- | --------------- | --------------------------- |
| **High-end Laptop** | 32-64GB | π’ Excellent | Development, personal use |
| **Workstation** | 64GB+ | π’ Optimal | Team deployment, production |
| **Cloud Instance** | 32GB+ | π’ Scalable | API serving, multiple users |
| **Entry Laptop** | 16-24GB | π‘ Limited | Light testing only |
#### **β‘ Performance Expectations**
- **Loading Time**: 30-90 seconds (depending on hardware)
- **First Response**: 60-120 seconds (model warming)
- **Subsequent Responses**: 30-60 seconds average
- **Tokens per Second**: 2-5 tokens/sec (CPU), 10-20 tokens/sec (GPU)
#### **π§ Software Dependencies**
```bash
# Core requirements
torch>=2.0.0
transformers>=4.35.0
peft>=0.5.0
# Optional but recommended
accelerate>=0.24.0
bitsandbytes>=0.41.0 # For quantization
flash-attn>=2.0.0 # For GPU optimization
```
### π
**Strengths & Use Cases**
**π₯ Excellent Performance:**
- CI/CD pipeline setup and optimization
- GitHub Actions workflow development
- Build automation and deployment strategies
**β
Strong Performance:**
- Docker production security practices
- Container vulnerability management
- Kubernetes troubleshooting and debugging
- DevOps incident response procedures
**π― Ideal For:**
- DevOps team assistance and mentoring
- CI/CD pipeline guidance and automation
- Docker security consultations
- Infrastructure troubleshooting support
- Developer training and knowledge sharing
### β οΈ **Areas for Enhancement**
- **Kubernetes Deployments**: Consider supplementing with official K8s documentation
- **Infrastructure as Code**: Best paired with Terraform/Ansible resources
- **Complex Multi-cloud**: May need additional context for advanced scenarios
## π Training Data
This model was trained on DevOps-related datasets including:
- Stack Overflow DevOps questions and answers
- Docker commands and configurations
- Kubernetes deployment guides
- Infrastructure as Code examples
- SRE incident response procedures
- CI/CD pipeline configurations
## π§ Model Architecture
- **LoRA Rank**: 16
- **LoRA Alpha**: 32
- **Target Modules**: All linear layers
- **Trainable Parameters**: ~43M (0.53% of base model)
## π **Production Deployment**
### π¦ **Local Deployment (Recommended)**
Perfect for personal use or small teams with sufficient hardware:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Optimized for local deployment
base_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-8B",
torch_dtype=torch.float16,
device_map="cpu", # Use "auto" if you have GPU
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
model = PeftModel.from_pretrained(base_model, "AMaslovskyi/qwen-devops-foundation-lora")
# DevOps-optimized generation
def ask_devops_expert(question):
prompt = f"<|im_start|>system\nYou are a DevOps expert. Provide practical, actionable advice.<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
**inputs,
max_length=512,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response[len(prompt):].strip()
# Example usage
print(ask_devops_expert("How do I set up a CI/CD pipeline with GitHub Actions?"))
```
### βοΈ **Cloud Deployment Options**
**Docker Container:**
```dockerfile
FROM python:3.11-slim
RUN pip install torch transformers peft
# Copy your inference script
CMD ["python", "inference_server.py"]
```
**API Server:**
- FastAPI-based inference server included in evaluation suite
- Kubernetes deployment manifests available
- Auto-scaling and load balancing support
### π **Production Readiness: π‘ Nearly Ready**
**β
Ready For:**
- Internal DevOps team assistance
- CI/CD pipeline guidance
- Docker security consultations
- Developer training and mentoring
**β οΈ Monitor For:**
- Complex Kubernetes deployments
- Advanced Infrastructure as Code
- Multi-cloud architecture decisions
## π Files Included
- `adapter_model.safetensors`: LoRA adapter weights (main model file)
- `adapter_config.json`: LoRA configuration parameters
- `tokenizer.json`: Fast tokenizer configuration
- `tokenizer_config.json`: Tokenizer settings and parameters
- `special_tokens_map.json`: Special token mappings
- `vocab.json`: Vocabulary mapping
- `merges.txt`: BPE merge rules
## π License
Apache 2.0
## π **Evaluation & Testing**
This model has been comprehensively evaluated across 21 DevOps scenarios with:
- **5-question quick assessment**: Fast performance validation
- **Comprehensive evaluation suite**: 7 DevOps categories tested
- **Comparative analysis**: Side-by-side testing with base Qwen3-8B
- **System compatibility testing**: Hardware requirement analysis
- **Production readiness assessment**: Deployment recommendations
**Evaluation Tools Available:**
- Automated testing scripts
- Performance benchmarking suite
- Interactive chat interface
- API server with health monitoring
## π‘ **Example Conversations**
**CI/CD Pipeline Setup:**
```
User: How do I set up a CI/CD pipeline with GitHub Actions?
Model: I'll help you set up a complete CI/CD pipeline with GitHub Actions...
[Provides step-by-step workflow configuration, testing stages, deployment automation]
```
**Docker Security:**
```
User: What are Docker security best practices for production?
Model: Here are the essential Docker security practices for production environments...
[Covers non-root users, image scanning, minimal base images, secrets management]
```
**Troubleshooting:**
```
User: My Kubernetes pod is stuck in Pending state. How do I troubleshoot?
Model: Let's systematically troubleshoot your pod scheduling issue...
[Provides kubectl commands, event analysis, resource checking steps]
```
## π **Related Resources**
- **ποΈ Training Space**: [HuggingFace Space](https://huggingface.co/spaces/AMaslovskyi/qwen-devops-training)
- **π Evaluation Suite**: Comprehensive testing tools and results
- **π Deployment Scripts**: Ready-to-use inference servers and Docker configs
- **π Documentation**: Detailed usage guides and best practices
## π Acknowledgments
- Base model: [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) by Alibaba Cloud
- Training infrastructure: HuggingFace Spaces (4x L40S GPUs)
- Training framework: Transformers + PEFT
- Evaluation: Comprehensive DevOps testing suite (21+ scenarios)
|