Elf_encoder / src /band_plotters.py
thomaswarford's picture
Upload 77 files
90f531c verified
raw
history blame
11.4 kB
#!/usr/bin/env python
"""
Functions which plot band structures.
Many were used heavily for previous approaches but are now redundant.
"""
import json
import sys
import os
from pathlib import Path
import matplotlib.pyplot as plt
import warnings
import numpy as np
from skimage.transform import resize
from pymatgen.electronic_structure.bandstructure import BandStructureSymmLine
from pymatgen.electronic_structure.dos import CompleteDos
from pymatgen.electronic_structure.plotter import BSDOSPlotter
from torchvision import transforms
from fastai import *
from fastai.vision.all import *
# from .Tiff32Image import *
# DATA_DIRECTORY = Path("../../data")
DATA_DIRECTORY = Path("/storage/2dmatpedia")
ANUPAM_PATH = Path("/notebooks/band-fingerprint/fingerprints/anupam_original.csv")
# "henry's local data path"
# DATA_DIRECTORY = Path("../../MPhys_Project/data extraction+fingerprinting/FULL_MATPEDIA_DATA")
def plot(material_id, data_directory=DATA_DIRECTORY, e_bounds=[-4, 4], bs_projection="elements", dos=True):
data_directory = Path(data_directory)
# get bands data
filename_bands = data_directory/f"bands/{material_id}.json"
if not filename_bands.exists():
raise FileNotFoundError("No such file %s" % filename_bands)
bands_dict=json.load(open(filename_bands))
bands=BandStructureSymmLine.from_dict(bands_dict)
# create plotter object
bsp=BSDOSPlotter(vb_energy_range=-e_bounds[0], cb_energy_range=e_bounds[1], fixed_cb_energy=True, font="DejaVu Sans", bs_projection=bs_projection)
filename_dos = data_directory/f"dos/{material_id}.json"
if filename_dos.exists() and dos:
dos_dict=json.load(open(filename_dos))
dos=CompleteDos.from_dict(dos_dict)
ax = bsp.get_plot(bands, dos=dos)
else:
ax = bsp.get_plot(bands)
plt.show()
def bare_plot(material_id, data_directory=DATA_DIRECTORY, plot_dos=False, e_bounds=[-4, 4], bs_legend=None, rgb_legend=False):
data_directory = Path(data_directory)
# get bands data
filename_bands = data_directory/f"bands/{material_id}.json"
if not filename_bands.exists():
raise FileNotFoundError("No such file %s" % filename_bands)
bands_dict=json.load(open(filename_bands))
bands=BandStructureSymmLine.from_dict(bands_dict)
# create plotter object
bsp=BSDOSPlotter(vb_energy_range=-e_bounds[0], cb_energy_range=e_bounds[1], fixed_cb_energy=True, font="DejaVu Sans", axis_fontsize=0, tick_fontsize=0, bs_legend=bs_legend, rgb_legend=rgb_legend, fig_size=(8, 8), dos_legend=None)
filename_dos = data_directory/f"dos/{material_id}.json"
if filename_dos.exists() and plot_dos:
dos_dict=json.load(open(filename_dos))
dos=CompleteDos.from_dict(dos_dict)
ax = bsp.get_plot(bands, dos=dos)
for axi in ax:
axi.spines['left'].set_visible(False)
axi.spines['bottom'].set_visible(False)
axi.spines['right'].set_visible(False)
axi.spines['top'].set_visible(False)
axi.tick_params(left=False, bottom=False)
axi.yaxis.grid(False)
plt.subplots_adjust(wspace=0)
else:
ax = bsp.get_plot(bands)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.tick_params(left=False, bottom=False)
ax.yaxis.grid(False)
plt.subplots_adjust(left=-0.001, right=1, top=1+0.001, bottom=0)
def plot_from_bands_picture(material_id, band_energies_minus_efermi, data_directory=DATA_DIRECTORY, e_bounds=[-4, 4], verbose=True):
data_directory = Path(data_directory)
# get bands data
filename_bands = data_directory/f"bands/{material_id}.json"
if not filename_bands.exists():
raise FileNotFoundError("No such file %s" % filename_bands)
band_energies_minus_efermi = np.squeeze(band_energies_minus_efermi) # remove length 1 dimensions
bands_dict=json.load(open(filename_bands))
band_energies_width = np.array(bands_dict["bands"]["1"]).shape[1]
if band_energies_width != band_energies_minus_efermi.shape[1]:
if verbose:
print(f"Dimensions of energy array don't match those of {material_id}: resizing.")
band_energies_minus_efermi = resize(band_energies_minus_efermi, (band_energies_minus_efermi.shape[0], band_energies_width), preserve_range=True)
bands_dict["projection"] = None
# bands
bands_dict["bands"] = {1: band_energies_minus_efermi+bands_dict["efermi"]}
bands=BandStructureSymmLine.from_dict(bands_dict)
# create plotter object
bsp=BSDOSPlotter(vb_energy_range=-e_bounds[0], cb_energy_range=e_bounds[1], fixed_cb_energy=True, font="DejaVu Sans", bs_projection=None)
ax = bsp.get_plot(bands)
return ax
def plot_from_bands_tensor(material_id, band_energies_tensor_normalized, min_energy_minus_efermi, max_energy_minus_efermi, data_directory=DATA_DIRECTORY, e_bounds=[-4, 4], verbose=True):
band_energies_minus_efermi = band_energies_tensor_normalized.detach().cpu().numpy()
band_energies_minus_efermi = band_energies_minus_efermi * (max_energy_minus_efermi - min_energy_minus_efermi) + min_energy_minus_efermi
return plot_from_bands_picture(material_id, band_energies_minus_efermi, data_directory=data_directory, e_bounds=e_bounds, verbose=verbose)
def pad_or_crop_to_height(image, desired_height):
# Get the current size of the image
current_height = image.shape[0]
if current_height < desired_height:
# Calculate the pad width for each axis
pad_width = [((desired_height-current_height) // 2, (desired_height-current_height + 1) // 2),
(0, 0)]
# Pad the image with zeros using np.pad
image = np.pad(image, pad_width, mode='constant', constant_values=0)
# Crop the padded image to the desired size
image = image[:desired_height]
return image
def view_prediction(material_id, model, min_energy_minus_efermi, max_energy_minus_efermi, data_directory=DATA_DIRECTORY, image_directory="energies_12_nearest_bands",
device="gpu", e_bounds=[-4, 4], verbose=True, width=None, height=None, height_mode="pad", act_func=None):
fig, ax = plt.subplots(2, 1)
image_filename = data_directory/f"images/{image_directory}/{material_id}.tiff"
input_numpy = load_tiff_uint16_image(image_filename).astype(np.float64)
if width:
input_numpy = resize(input_numpy, (input_numpy.shape[0], width))
if height:
if height_mode.lower() == "pad":
input_numpy = pad_or_crop_to_height(input_numpy, height)
elif height_mode.lower() == "squish":
input_numpy = resize(input_numpy, (height, input_numpy.shape[1]))#
else:
print("Invalid height_mode: can only be pad or squish.")
input_tensor = torch.from_numpy(input_numpy)
input_tensor = input_tensor / (2**16-1)
input_tensor = input_tensor[None, None, :, :]
if device == "gpu":
input_tensor = input_tensor.float().cuda()
model.cuda()
else:
input_tensor = input_tensor.float().cpu()
model.cpu()
output_tensor = model.forward(input_tensor)
if act_func:
output_tensor = act_func(output_tensor[0])
input_tensor = input_tensor.squeeze().cpu()
output_tensor = output_tensor.detach().squeeze().cpu()
ax[0].set_title("Input")
ax[0].imshow(input_tensor.numpy())
ax[1].set_title("Reconstruction")
ax[1].imshow(output_tensor.numpy())
ax_input = plot_from_bands_tensor(material_id, input_tensor, min_energy_minus_efermi, max_energy_minus_efermi, e_bounds=e_bounds, verbose=False)
ax_input.set_title("Input")
ax_output = plot_from_bands_tensor(material_id, output_tensor, min_energy_minus_efermi, max_energy_minus_efermi, e_bounds=e_bounds, verbose=False)
ax_output.set_title("Reconstruction")
return ax
def view_prediction_images(material_id, model, data_directory=DATA_DIRECTORY, image_directory="no_dos_bw_dpi_10/band_images",
device="gpu", e_bounds=[-4, 4], verbose=True, width=None, height=None, height_mode="pad", act_func=None):
input_image_path = data_directory/f"images/{image_directory}/{material_id}.png"
input_image = Image.open(input_image_path).convert('RGB')
transform = transforms.Compose([
transforms.Resize((height, width)), # Adjust height and width as needed
transforms.ToTensor(),
])
input_tensor = transform(input_image).unsqueeze(0) # Add batch dimension
# Generate predictions
with torch.no_grad():
reconstructed_image_tuple = model(input_tensor)
# Access the relevant tensor from the tuple
reconstructed_image = F.sigmoid(reconstructed_image_tuple[0])
# Convert tensors to NumPy arrays for visualization
input_image_np = np.transpose(input_tensor.squeeze().numpy(), (1, 2, 0))
reconstructed_image_np = np.transpose(reconstructed_image.squeeze().numpy(), (1, 2, 0))
# # resize? not sure if correct
# reconstructed_image_np = reconstructed_image_np/255.0
#print(input_image_np)
#print(reconstructed_image_np)
# Display the input and reconstructed images
plt.subplot(1, 2, 1)
plt.imshow(input_image_np)
plt.title('Input Image')
plt.subplot(1, 2, 2)
plt.imshow(reconstructed_image_np)
plt.title('Reconstructed Image')
plt.show()
# visdom view
# import visdom
# vis = visdom.Visdom()
# # Send input and reconstructed images to Visdom
# vis.image(input_image_np.transpose((2, 0, 1)), win='Input Image', opts=dict(title='Input Image'))
#vis.image(reconstructed_image_np.transpose((2, 0, 1)), win='Reconstructed Image', opts=dict(title='Reconstructed Image'))
return 0
def load_band_image_array(material_id, npz_path, npz_filename, npz_key="images"):
anupam_df = pd.read_csv(ANUPAM_PATH, index_col="ID")
i = anupam_df.index.get_loc(material_id)
images = np.load("{0}/{1}.npz".format(npz_path, npz_filename))[npz_key]
input_array = images[i]
#input_tensor = torch.from_numpy(input_array).cpu()
return input_array
def binarize(array_data, threshold=0.8):
array_data[array_data>=threshold] = 1.0
array_data[array_data<=threshold] = 0.0
return array_data
def view_prediction_npz(material_id, model, npz_path, npz_filename, npz_key="images", bool_binarise=False, threshold=0.8):
model.cpu()
input_array = load_band_image_array(material_id, npz_path, npz_filename, npz_key="images")
input_tensor = torch.from_numpy(input_array).cpu()
input_tensor = input_tensor.unsqueeze(0).float()
with torch.no_grad():
prediction = F.sigmoid(model(input_tensor)[0])
prediction = prediction.detach().squeeze().numpy()
if(bool_binarise):
prediction = binarize(prediction, threshold=threshold)
fig, ax = plt.subplots(2, 1)
ax[0].set_title("Input")
ax[0].imshow(input_array)
ax[1].set_title("Reconstruction")
ax[1].imshow(prediction)