#!/usr/bin/env python """ Functions which plot band structures. Many were used heavily for previous approaches but are now redundant. """ import json import sys import os from pathlib import Path import matplotlib.pyplot as plt import warnings import numpy as np from skimage.transform import resize from pymatgen.electronic_structure.bandstructure import BandStructureSymmLine from pymatgen.electronic_structure.dos import CompleteDos from pymatgen.electronic_structure.plotter import BSDOSPlotter from torchvision import transforms from fastai import * from fastai.vision.all import * # from .Tiff32Image import * # DATA_DIRECTORY = Path("../../data") DATA_DIRECTORY = Path("/storage/2dmatpedia") ANUPAM_PATH = Path("/notebooks/band-fingerprint/fingerprints/anupam_original.csv") # "henry's local data path" # DATA_DIRECTORY = Path("../../MPhys_Project/data extraction+fingerprinting/FULL_MATPEDIA_DATA") def plot(material_id, data_directory=DATA_DIRECTORY, e_bounds=[-4, 4], bs_projection="elements", dos=True): data_directory = Path(data_directory) # get bands data filename_bands = data_directory/f"bands/{material_id}.json" if not filename_bands.exists(): raise FileNotFoundError("No such file %s" % filename_bands) bands_dict=json.load(open(filename_bands)) bands=BandStructureSymmLine.from_dict(bands_dict) # create plotter object bsp=BSDOSPlotter(vb_energy_range=-e_bounds[0], cb_energy_range=e_bounds[1], fixed_cb_energy=True, font="DejaVu Sans", bs_projection=bs_projection) filename_dos = data_directory/f"dos/{material_id}.json" if filename_dos.exists() and dos: dos_dict=json.load(open(filename_dos)) dos=CompleteDos.from_dict(dos_dict) ax = bsp.get_plot(bands, dos=dos) else: ax = bsp.get_plot(bands) plt.show() def bare_plot(material_id, data_directory=DATA_DIRECTORY, plot_dos=False, e_bounds=[-4, 4], bs_legend=None, rgb_legend=False): data_directory = Path(data_directory) # get bands data filename_bands = data_directory/f"bands/{material_id}.json" if not filename_bands.exists(): raise FileNotFoundError("No such file %s" % filename_bands) bands_dict=json.load(open(filename_bands)) bands=BandStructureSymmLine.from_dict(bands_dict) # create plotter object bsp=BSDOSPlotter(vb_energy_range=-e_bounds[0], cb_energy_range=e_bounds[1], fixed_cb_energy=True, font="DejaVu Sans", axis_fontsize=0, tick_fontsize=0, bs_legend=bs_legend, rgb_legend=rgb_legend, fig_size=(8, 8), dos_legend=None) filename_dos = data_directory/f"dos/{material_id}.json" if filename_dos.exists() and plot_dos: dos_dict=json.load(open(filename_dos)) dos=CompleteDos.from_dict(dos_dict) ax = bsp.get_plot(bands, dos=dos) for axi in ax: axi.spines['left'].set_visible(False) axi.spines['bottom'].set_visible(False) axi.spines['right'].set_visible(False) axi.spines['top'].set_visible(False) axi.tick_params(left=False, bottom=False) axi.yaxis.grid(False) plt.subplots_adjust(wspace=0) else: ax = bsp.get_plot(bands) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(left=False, bottom=False) ax.yaxis.grid(False) plt.subplots_adjust(left=-0.001, right=1, top=1+0.001, bottom=0) def plot_from_bands_picture(material_id, band_energies_minus_efermi, data_directory=DATA_DIRECTORY, e_bounds=[-4, 4], verbose=True): data_directory = Path(data_directory) # get bands data filename_bands = data_directory/f"bands/{material_id}.json" if not filename_bands.exists(): raise FileNotFoundError("No such file %s" % filename_bands) band_energies_minus_efermi = np.squeeze(band_energies_minus_efermi) # remove length 1 dimensions bands_dict=json.load(open(filename_bands)) band_energies_width = np.array(bands_dict["bands"]["1"]).shape[1] if band_energies_width != band_energies_minus_efermi.shape[1]: if verbose: print(f"Dimensions of energy array don't match those of {material_id}: resizing.") band_energies_minus_efermi = resize(band_energies_minus_efermi, (band_energies_minus_efermi.shape[0], band_energies_width), preserve_range=True) bands_dict["projection"] = None # bands bands_dict["bands"] = {1: band_energies_minus_efermi+bands_dict["efermi"]} bands=BandStructureSymmLine.from_dict(bands_dict) # create plotter object bsp=BSDOSPlotter(vb_energy_range=-e_bounds[0], cb_energy_range=e_bounds[1], fixed_cb_energy=True, font="DejaVu Sans", bs_projection=None) ax = bsp.get_plot(bands) return ax def plot_from_bands_tensor(material_id, band_energies_tensor_normalized, min_energy_minus_efermi, max_energy_minus_efermi, data_directory=DATA_DIRECTORY, e_bounds=[-4, 4], verbose=True): band_energies_minus_efermi = band_energies_tensor_normalized.detach().cpu().numpy() band_energies_minus_efermi = band_energies_minus_efermi * (max_energy_minus_efermi - min_energy_minus_efermi) + min_energy_minus_efermi return plot_from_bands_picture(material_id, band_energies_minus_efermi, data_directory=data_directory, e_bounds=e_bounds, verbose=verbose) def pad_or_crop_to_height(image, desired_height): # Get the current size of the image current_height = image.shape[0] if current_height < desired_height: # Calculate the pad width for each axis pad_width = [((desired_height-current_height) // 2, (desired_height-current_height + 1) // 2), (0, 0)] # Pad the image with zeros using np.pad image = np.pad(image, pad_width, mode='constant', constant_values=0) # Crop the padded image to the desired size image = image[:desired_height] return image def view_prediction(material_id, model, min_energy_minus_efermi, max_energy_minus_efermi, data_directory=DATA_DIRECTORY, image_directory="energies_12_nearest_bands", device="gpu", e_bounds=[-4, 4], verbose=True, width=None, height=None, height_mode="pad", act_func=None): fig, ax = plt.subplots(2, 1) image_filename = data_directory/f"images/{image_directory}/{material_id}.tiff" input_numpy = load_tiff_uint16_image(image_filename).astype(np.float64) if width: input_numpy = resize(input_numpy, (input_numpy.shape[0], width)) if height: if height_mode.lower() == "pad": input_numpy = pad_or_crop_to_height(input_numpy, height) elif height_mode.lower() == "squish": input_numpy = resize(input_numpy, (height, input_numpy.shape[1]))# else: print("Invalid height_mode: can only be pad or squish.") input_tensor = torch.from_numpy(input_numpy) input_tensor = input_tensor / (2**16-1) input_tensor = input_tensor[None, None, :, :] if device == "gpu": input_tensor = input_tensor.float().cuda() model.cuda() else: input_tensor = input_tensor.float().cpu() model.cpu() output_tensor = model.forward(input_tensor) if act_func: output_tensor = act_func(output_tensor[0]) input_tensor = input_tensor.squeeze().cpu() output_tensor = output_tensor.detach().squeeze().cpu() ax[0].set_title("Input") ax[0].imshow(input_tensor.numpy()) ax[1].set_title("Reconstruction") ax[1].imshow(output_tensor.numpy()) ax_input = plot_from_bands_tensor(material_id, input_tensor, min_energy_minus_efermi, max_energy_minus_efermi, e_bounds=e_bounds, verbose=False) ax_input.set_title("Input") ax_output = plot_from_bands_tensor(material_id, output_tensor, min_energy_minus_efermi, max_energy_minus_efermi, e_bounds=e_bounds, verbose=False) ax_output.set_title("Reconstruction") return ax def view_prediction_images(material_id, model, data_directory=DATA_DIRECTORY, image_directory="no_dos_bw_dpi_10/band_images", device="gpu", e_bounds=[-4, 4], verbose=True, width=None, height=None, height_mode="pad", act_func=None): input_image_path = data_directory/f"images/{image_directory}/{material_id}.png" input_image = Image.open(input_image_path).convert('RGB') transform = transforms.Compose([ transforms.Resize((height, width)), # Adjust height and width as needed transforms.ToTensor(), ]) input_tensor = transform(input_image).unsqueeze(0) # Add batch dimension # Generate predictions with torch.no_grad(): reconstructed_image_tuple = model(input_tensor) # Access the relevant tensor from the tuple reconstructed_image = F.sigmoid(reconstructed_image_tuple[0]) # Convert tensors to NumPy arrays for visualization input_image_np = np.transpose(input_tensor.squeeze().numpy(), (1, 2, 0)) reconstructed_image_np = np.transpose(reconstructed_image.squeeze().numpy(), (1, 2, 0)) # # resize? not sure if correct # reconstructed_image_np = reconstructed_image_np/255.0 #print(input_image_np) #print(reconstructed_image_np) # Display the input and reconstructed images plt.subplot(1, 2, 1) plt.imshow(input_image_np) plt.title('Input Image') plt.subplot(1, 2, 2) plt.imshow(reconstructed_image_np) plt.title('Reconstructed Image') plt.show() # visdom view # import visdom # vis = visdom.Visdom() # # Send input and reconstructed images to Visdom # vis.image(input_image_np.transpose((2, 0, 1)), win='Input Image', opts=dict(title='Input Image')) #vis.image(reconstructed_image_np.transpose((2, 0, 1)), win='Reconstructed Image', opts=dict(title='Reconstructed Image')) return 0 def load_band_image_array(material_id, npz_path, npz_filename, npz_key="images"): anupam_df = pd.read_csv(ANUPAM_PATH, index_col="ID") i = anupam_df.index.get_loc(material_id) images = np.load("{0}/{1}.npz".format(npz_path, npz_filename))[npz_key] input_array = images[i] #input_tensor = torch.from_numpy(input_array).cpu() return input_array def binarize(array_data, threshold=0.8): array_data[array_data>=threshold] = 1.0 array_data[array_data<=threshold] = 0.0 return array_data def view_prediction_npz(material_id, model, npz_path, npz_filename, npz_key="images", bool_binarise=False, threshold=0.8): model.cpu() input_array = load_band_image_array(material_id, npz_path, npz_filename, npz_key="images") input_tensor = torch.from_numpy(input_array).cpu() input_tensor = input_tensor.unsqueeze(0).float() with torch.no_grad(): prediction = F.sigmoid(model(input_tensor)[0]) prediction = prediction.detach().squeeze().numpy() if(bool_binarise): prediction = binarize(prediction, threshold=threshold) fig, ax = plt.subplots(2, 1) ax[0].set_title("Input") ax[0].imshow(input_array) ax[1].set_title("Reconstruction") ax[1].imshow(prediction)