File size: 11,351 Bytes
90f531c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
#!/usr/bin/env python
"""
Functions which plot band structures.
Many were used heavily for previous approaches but are now redundant.
"""
import json
import sys
import os
from pathlib import Path
import matplotlib.pyplot as plt
import warnings
import numpy as np
from skimage.transform import resize
from pymatgen.electronic_structure.bandstructure import BandStructureSymmLine
from pymatgen.electronic_structure.dos import CompleteDos
from pymatgen.electronic_structure.plotter import BSDOSPlotter
from torchvision import transforms
from fastai import *
from fastai.vision.all import *
# from .Tiff32Image import *
# DATA_DIRECTORY = Path("../../data")
DATA_DIRECTORY = Path("/storage/2dmatpedia")
ANUPAM_PATH = Path("/notebooks/band-fingerprint/fingerprints/anupam_original.csv")
# "henry's local data path"
# DATA_DIRECTORY = Path("../../MPhys_Project/data extraction+fingerprinting/FULL_MATPEDIA_DATA")
def plot(material_id, data_directory=DATA_DIRECTORY, e_bounds=[-4, 4], bs_projection="elements", dos=True):
data_directory = Path(data_directory)
# get bands data
filename_bands = data_directory/f"bands/{material_id}.json"
if not filename_bands.exists():
raise FileNotFoundError("No such file %s" % filename_bands)
bands_dict=json.load(open(filename_bands))
bands=BandStructureSymmLine.from_dict(bands_dict)
# create plotter object
bsp=BSDOSPlotter(vb_energy_range=-e_bounds[0], cb_energy_range=e_bounds[1], fixed_cb_energy=True, font="DejaVu Sans", bs_projection=bs_projection)
filename_dos = data_directory/f"dos/{material_id}.json"
if filename_dos.exists() and dos:
dos_dict=json.load(open(filename_dos))
dos=CompleteDos.from_dict(dos_dict)
ax = bsp.get_plot(bands, dos=dos)
else:
ax = bsp.get_plot(bands)
plt.show()
def bare_plot(material_id, data_directory=DATA_DIRECTORY, plot_dos=False, e_bounds=[-4, 4], bs_legend=None, rgb_legend=False):
data_directory = Path(data_directory)
# get bands data
filename_bands = data_directory/f"bands/{material_id}.json"
if not filename_bands.exists():
raise FileNotFoundError("No such file %s" % filename_bands)
bands_dict=json.load(open(filename_bands))
bands=BandStructureSymmLine.from_dict(bands_dict)
# create plotter object
bsp=BSDOSPlotter(vb_energy_range=-e_bounds[0], cb_energy_range=e_bounds[1], fixed_cb_energy=True, font="DejaVu Sans", axis_fontsize=0, tick_fontsize=0, bs_legend=bs_legend, rgb_legend=rgb_legend, fig_size=(8, 8), dos_legend=None)
filename_dos = data_directory/f"dos/{material_id}.json"
if filename_dos.exists() and plot_dos:
dos_dict=json.load(open(filename_dos))
dos=CompleteDos.from_dict(dos_dict)
ax = bsp.get_plot(bands, dos=dos)
for axi in ax:
axi.spines['left'].set_visible(False)
axi.spines['bottom'].set_visible(False)
axi.spines['right'].set_visible(False)
axi.spines['top'].set_visible(False)
axi.tick_params(left=False, bottom=False)
axi.yaxis.grid(False)
plt.subplots_adjust(wspace=0)
else:
ax = bsp.get_plot(bands)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.tick_params(left=False, bottom=False)
ax.yaxis.grid(False)
plt.subplots_adjust(left=-0.001, right=1, top=1+0.001, bottom=0)
def plot_from_bands_picture(material_id, band_energies_minus_efermi, data_directory=DATA_DIRECTORY, e_bounds=[-4, 4], verbose=True):
data_directory = Path(data_directory)
# get bands data
filename_bands = data_directory/f"bands/{material_id}.json"
if not filename_bands.exists():
raise FileNotFoundError("No such file %s" % filename_bands)
band_energies_minus_efermi = np.squeeze(band_energies_minus_efermi) # remove length 1 dimensions
bands_dict=json.load(open(filename_bands))
band_energies_width = np.array(bands_dict["bands"]["1"]).shape[1]
if band_energies_width != band_energies_minus_efermi.shape[1]:
if verbose:
print(f"Dimensions of energy array don't match those of {material_id}: resizing.")
band_energies_minus_efermi = resize(band_energies_minus_efermi, (band_energies_minus_efermi.shape[0], band_energies_width), preserve_range=True)
bands_dict["projection"] = None
# bands
bands_dict["bands"] = {1: band_energies_minus_efermi+bands_dict["efermi"]}
bands=BandStructureSymmLine.from_dict(bands_dict)
# create plotter object
bsp=BSDOSPlotter(vb_energy_range=-e_bounds[0], cb_energy_range=e_bounds[1], fixed_cb_energy=True, font="DejaVu Sans", bs_projection=None)
ax = bsp.get_plot(bands)
return ax
def plot_from_bands_tensor(material_id, band_energies_tensor_normalized, min_energy_minus_efermi, max_energy_minus_efermi, data_directory=DATA_DIRECTORY, e_bounds=[-4, 4], verbose=True):
band_energies_minus_efermi = band_energies_tensor_normalized.detach().cpu().numpy()
band_energies_minus_efermi = band_energies_minus_efermi * (max_energy_minus_efermi - min_energy_minus_efermi) + min_energy_minus_efermi
return plot_from_bands_picture(material_id, band_energies_minus_efermi, data_directory=data_directory, e_bounds=e_bounds, verbose=verbose)
def pad_or_crop_to_height(image, desired_height):
# Get the current size of the image
current_height = image.shape[0]
if current_height < desired_height:
# Calculate the pad width for each axis
pad_width = [((desired_height-current_height) // 2, (desired_height-current_height + 1) // 2),
(0, 0)]
# Pad the image with zeros using np.pad
image = np.pad(image, pad_width, mode='constant', constant_values=0)
# Crop the padded image to the desired size
image = image[:desired_height]
return image
def view_prediction(material_id, model, min_energy_minus_efermi, max_energy_minus_efermi, data_directory=DATA_DIRECTORY, image_directory="energies_12_nearest_bands",
device="gpu", e_bounds=[-4, 4], verbose=True, width=None, height=None, height_mode="pad", act_func=None):
fig, ax = plt.subplots(2, 1)
image_filename = data_directory/f"images/{image_directory}/{material_id}.tiff"
input_numpy = load_tiff_uint16_image(image_filename).astype(np.float64)
if width:
input_numpy = resize(input_numpy, (input_numpy.shape[0], width))
if height:
if height_mode.lower() == "pad":
input_numpy = pad_or_crop_to_height(input_numpy, height)
elif height_mode.lower() == "squish":
input_numpy = resize(input_numpy, (height, input_numpy.shape[1]))#
else:
print("Invalid height_mode: can only be pad or squish.")
input_tensor = torch.from_numpy(input_numpy)
input_tensor = input_tensor / (2**16-1)
input_tensor = input_tensor[None, None, :, :]
if device == "gpu":
input_tensor = input_tensor.float().cuda()
model.cuda()
else:
input_tensor = input_tensor.float().cpu()
model.cpu()
output_tensor = model.forward(input_tensor)
if act_func:
output_tensor = act_func(output_tensor[0])
input_tensor = input_tensor.squeeze().cpu()
output_tensor = output_tensor.detach().squeeze().cpu()
ax[0].set_title("Input")
ax[0].imshow(input_tensor.numpy())
ax[1].set_title("Reconstruction")
ax[1].imshow(output_tensor.numpy())
ax_input = plot_from_bands_tensor(material_id, input_tensor, min_energy_minus_efermi, max_energy_minus_efermi, e_bounds=e_bounds, verbose=False)
ax_input.set_title("Input")
ax_output = plot_from_bands_tensor(material_id, output_tensor, min_energy_minus_efermi, max_energy_minus_efermi, e_bounds=e_bounds, verbose=False)
ax_output.set_title("Reconstruction")
return ax
def view_prediction_images(material_id, model, data_directory=DATA_DIRECTORY, image_directory="no_dos_bw_dpi_10/band_images",
device="gpu", e_bounds=[-4, 4], verbose=True, width=None, height=None, height_mode="pad", act_func=None):
input_image_path = data_directory/f"images/{image_directory}/{material_id}.png"
input_image = Image.open(input_image_path).convert('RGB')
transform = transforms.Compose([
transforms.Resize((height, width)), # Adjust height and width as needed
transforms.ToTensor(),
])
input_tensor = transform(input_image).unsqueeze(0) # Add batch dimension
# Generate predictions
with torch.no_grad():
reconstructed_image_tuple = model(input_tensor)
# Access the relevant tensor from the tuple
reconstructed_image = F.sigmoid(reconstructed_image_tuple[0])
# Convert tensors to NumPy arrays for visualization
input_image_np = np.transpose(input_tensor.squeeze().numpy(), (1, 2, 0))
reconstructed_image_np = np.transpose(reconstructed_image.squeeze().numpy(), (1, 2, 0))
# # resize? not sure if correct
# reconstructed_image_np = reconstructed_image_np/255.0
#print(input_image_np)
#print(reconstructed_image_np)
# Display the input and reconstructed images
plt.subplot(1, 2, 1)
plt.imshow(input_image_np)
plt.title('Input Image')
plt.subplot(1, 2, 2)
plt.imshow(reconstructed_image_np)
plt.title('Reconstructed Image')
plt.show()
# visdom view
# import visdom
# vis = visdom.Visdom()
# # Send input and reconstructed images to Visdom
# vis.image(input_image_np.transpose((2, 0, 1)), win='Input Image', opts=dict(title='Input Image'))
#vis.image(reconstructed_image_np.transpose((2, 0, 1)), win='Reconstructed Image', opts=dict(title='Reconstructed Image'))
return 0
def load_band_image_array(material_id, npz_path, npz_filename, npz_key="images"):
anupam_df = pd.read_csv(ANUPAM_PATH, index_col="ID")
i = anupam_df.index.get_loc(material_id)
images = np.load("{0}/{1}.npz".format(npz_path, npz_filename))[npz_key]
input_array = images[i]
#input_tensor = torch.from_numpy(input_array).cpu()
return input_array
def binarize(array_data, threshold=0.8):
array_data[array_data>=threshold] = 1.0
array_data[array_data<=threshold] = 0.0
return array_data
def view_prediction_npz(material_id, model, npz_path, npz_filename, npz_key="images", bool_binarise=False, threshold=0.8):
model.cpu()
input_array = load_band_image_array(material_id, npz_path, npz_filename, npz_key="images")
input_tensor = torch.from_numpy(input_array).cpu()
input_tensor = input_tensor.unsqueeze(0).float()
with torch.no_grad():
prediction = F.sigmoid(model(input_tensor)[0])
prediction = prediction.detach().squeeze().numpy()
if(bool_binarise):
prediction = binarize(prediction, threshold=threshold)
fig, ax = plt.subplots(2, 1)
ax[0].set_title("Input")
ax[0].imshow(input_array)
ax[1].set_title("Reconstruction")
ax[1].imshow(prediction)
|