wav2vec2-base-ft-keyword-spotting
This model is a fine-tuned version of facebook/wav2vec2-base on the superb dataset. It achieves the following results on the evaluation set:
- Loss: 0.0804
- Accuracy: 0.9829
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5081 | 1.0 | 399 | 0.3587 | 0.9698 |
0.2772 | 2.0 | 798 | 0.1273 | 0.9763 |
0.1748 | 3.0 | 1197 | 0.0957 | 0.9796 |
0.1407 | 4.0 | 1597 | 0.0804 | 0.9829 |
0.1233 | 5.0 | 1995 | 0.0774 | 0.9825 |
Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 161
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for zongxiao/wav2vec2-base-ft-keyword-spotting
Base model
facebook/wav2vec2-base