|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dotenv import load_dotenv |
|
from camel.models import ModelFactory |
|
from camel.toolkits import ( |
|
CodeExecutionToolkit, |
|
ExcelToolkit, |
|
ImageAnalysisToolkit, |
|
SearchToolkit, |
|
VideoAnalysisToolkit, |
|
WebToolkit, |
|
FileWriteToolkit, |
|
) |
|
from camel.types import ModelPlatformType, ModelType |
|
|
|
from utils import OwlRolePlaying, run_society, DocumentProcessingToolkit |
|
|
|
from camel.logger import set_log_level |
|
|
|
set_log_level(level="DEBUG") |
|
|
|
load_dotenv() |
|
|
|
|
|
def construct_society(question: str) -> OwlRolePlaying: |
|
""" |
|
Construct a society of agents based on the given question. |
|
|
|
Args: |
|
question (str): The task or question to be addressed by the society. |
|
|
|
Returns: |
|
OwlRolePlaying: A configured society of agents ready to address the question. |
|
""" |
|
|
|
|
|
models = { |
|
"user": ModelFactory.create( |
|
model_platform=ModelPlatformType.QWEN, |
|
model_type=ModelType.QWEN_MAX, |
|
model_config_dict={"temperature": 0}, |
|
), |
|
"assistant": ModelFactory.create( |
|
model_platform=ModelPlatformType.QWEN, |
|
model_type=ModelType.QWEN_MAX, |
|
model_config_dict={"temperature": 0}, |
|
), |
|
"web": ModelFactory.create( |
|
model_platform=ModelPlatformType.QWEN, |
|
model_type=ModelType.QWEN_VL_MAX, |
|
model_config_dict={"temperature": 0}, |
|
), |
|
"planning": ModelFactory.create( |
|
model_platform=ModelPlatformType.QWEN, |
|
model_type=ModelType.QWEN_MAX, |
|
model_config_dict={"temperature": 0}, |
|
), |
|
"video": ModelFactory.create( |
|
model_platform=ModelPlatformType.QWEN, |
|
model_type=ModelType.QWEN_VL_MAX, |
|
model_config_dict={"temperature": 0}, |
|
), |
|
"image": ModelFactory.create( |
|
model_platform=ModelPlatformType.QWEN, |
|
model_type=ModelType.QWEN_VL_MAX, |
|
model_config_dict={"temperature": 0}, |
|
), |
|
"document": ModelFactory.create( |
|
model_platform=ModelPlatformType.QWEN, |
|
model_type=ModelType.QWEN_VL_MAX, |
|
model_config_dict={"temperature": 0}, |
|
), |
|
} |
|
|
|
|
|
tools = [ |
|
*WebToolkit( |
|
headless=False, |
|
web_agent_model=models["web"], |
|
planning_agent_model=models["planning"], |
|
output_language="Chinese", |
|
).get_tools(), |
|
*VideoAnalysisToolkit(model=models["video"]).get_tools(), |
|
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(), |
|
*ImageAnalysisToolkit(model=models["image"]).get_tools(), |
|
SearchToolkit().search_duckduckgo, |
|
SearchToolkit().search_google, |
|
SearchToolkit().search_wiki, |
|
*ExcelToolkit().get_tools(), |
|
*DocumentProcessingToolkit(model=models["document"]).get_tools(), |
|
*FileWriteToolkit(output_dir="./").get_tools(), |
|
] |
|
|
|
|
|
user_agent_kwargs = {"model": models["user"]} |
|
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools} |
|
|
|
|
|
task_kwargs = { |
|
"task_prompt": question, |
|
"with_task_specify": False, |
|
} |
|
|
|
|
|
society = OwlRolePlaying( |
|
**task_kwargs, |
|
user_role_name="user", |
|
user_agent_kwargs=user_agent_kwargs, |
|
assistant_role_name="assistant", |
|
assistant_agent_kwargs=assistant_agent_kwargs, |
|
output_language="Chinese", |
|
) |
|
|
|
return society |
|
|
|
|
|
def main(): |
|
r"""Main function to run the OWL system with an example question.""" |
|
|
|
question = "浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格" |
|
|
|
|
|
society = construct_society(question) |
|
answer, chat_history, token_count = run_society(society) |
|
|
|
|
|
print(f"\033[94mAnswer: {answer}\033[0m") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|