File size: 5,134 Bytes
1482718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# To run this file, you need to configure the Qwen API key
# You can obtain your API key from Bailian platform: bailian.console.aliyun.com
# Set it as QWEN_API_KEY="your-api-key" in your .env file or add it to your environment variables
from dotenv import load_dotenv
from camel.models import ModelFactory
from camel.toolkits import (
CodeExecutionToolkit,
ExcelToolkit,
ImageAnalysisToolkit,
SearchToolkit,
VideoAnalysisToolkit,
WebToolkit,
FileWriteToolkit,
)
from camel.types import ModelPlatformType, ModelType
from utils import OwlRolePlaying, run_society, DocumentProcessingToolkit
from camel.logger import set_log_level
set_log_level(level="DEBUG")
load_dotenv()
def construct_society(question: str) -> OwlRolePlaying:
"""
Construct a society of agents based on the given question.
Args:
question (str): The task or question to be addressed by the society.
Returns:
OwlRolePlaying: A configured society of agents ready to address the question.
"""
# Create models for different components
models = {
"user": ModelFactory.create(
model_platform=ModelPlatformType.QWEN,
model_type=ModelType.QWEN_MAX,
model_config_dict={"temperature": 0},
),
"assistant": ModelFactory.create(
model_platform=ModelPlatformType.QWEN,
model_type=ModelType.QWEN_MAX,
model_config_dict={"temperature": 0},
),
"web": ModelFactory.create(
model_platform=ModelPlatformType.QWEN,
model_type=ModelType.QWEN_VL_MAX,
model_config_dict={"temperature": 0},
),
"planning": ModelFactory.create(
model_platform=ModelPlatformType.QWEN,
model_type=ModelType.QWEN_MAX,
model_config_dict={"temperature": 0},
),
"video": ModelFactory.create(
model_platform=ModelPlatformType.QWEN,
model_type=ModelType.QWEN_VL_MAX,
model_config_dict={"temperature": 0},
),
"image": ModelFactory.create(
model_platform=ModelPlatformType.QWEN,
model_type=ModelType.QWEN_VL_MAX,
model_config_dict={"temperature": 0},
),
"document": ModelFactory.create(
model_platform=ModelPlatformType.QWEN,
model_type=ModelType.QWEN_VL_MAX,
model_config_dict={"temperature": 0},
),
}
# Configure toolkits
tools = [
*WebToolkit(
headless=False, # Set to True for headless mode (e.g., on remote servers)
web_agent_model=models["web"],
planning_agent_model=models["planning"],
output_language="Chinese",
).get_tools(),
*VideoAnalysisToolkit(model=models["video"]).get_tools(),
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
*ImageAnalysisToolkit(model=models["image"]).get_tools(),
SearchToolkit().search_duckduckgo,
SearchToolkit().search_google, # Comment this out if you don't have google search
SearchToolkit().search_wiki,
*ExcelToolkit().get_tools(),
*DocumentProcessingToolkit(model=models["document"]).get_tools(),
*FileWriteToolkit(output_dir="./").get_tools(),
]
# Configure agent roles and parameters
user_agent_kwargs = {"model": models["user"]}
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
# Configure task parameters
task_kwargs = {
"task_prompt": question,
"with_task_specify": False,
}
# Create and return the society
society = OwlRolePlaying(
**task_kwargs,
user_role_name="user",
user_agent_kwargs=user_agent_kwargs,
assistant_role_name="assistant",
assistant_agent_kwargs=assistant_agent_kwargs,
output_language="Chinese",
)
return society
def main():
r"""Main function to run the OWL system with an example question."""
# Example research question
question = "浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格"
# Construct and run the society
society = construct_society(question)
answer, chat_history, token_count = run_society(society)
# Output the result
print(f"\033[94mAnswer: {answer}\033[0m")
if __name__ == "__main__":
main()
|