owl-agent / owl /app.py
zoe102's picture
Upload folder using huggingface_hub
1482718 verified
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
import sys
import gradio as gr
import subprocess
import threading
import time
from datetime import datetime
import queue
from pathlib import Path
import json
import signal
import dotenv
# 设置日志队列
log_queue: queue.Queue[str] = queue.Queue()
# 当前运行的进程
current_process = None
process_lock = threading.Lock()
# 脚本选项
SCRIPTS = {
"Qwen Mini (中文)": "run_qwen_mini_zh.py",
"Qwen (中文)": "run_qwen_zh.py",
"Mini": "run_mini.py",
"DeepSeek (中文)": "run_deepseek_zh.py",
"Default": "run.py",
"GAIA Roleplaying": "run_gaia_roleplaying.py",
"OpenAI Compatible": "run_openai_compatiable_model.py",
"Ollama": "run_ollama.py",
"Terminal": "run_terminal_zh.py",
}
# 脚本描述
SCRIPT_DESCRIPTIONS = {
"Qwen Mini (中文)": "使用阿里云Qwen模型的中文版本,适合中文问答和任务",
"Qwen (中文)": "使用阿里云Qwen模型,支持多种工具和功能",
"Mini": "轻量级版本,使用OpenAI GPT-4o模型",
"DeepSeek (中文)": "使用DeepSeek模型,适合非多模态任务",
"Default": "默认OWL实现,使用OpenAI GPT-4o模型和全套工具",
"GAIA Roleplaying": "GAIA基准测试实现,用于评估模型能力",
"OpenAI Compatible": "使用兼容OpenAI API的第三方模型,支持自定义API端点",
"Ollama": "使用Ollama API",
"Terminal": "使用本地终端执行python文件",
}
# 环境变量分组
ENV_GROUPS = {
"模型API": [
{
"name": "OPENAI_API_KEY",
"label": "OpenAI API密钥",
"type": "password",
"required": False,
"help": "OpenAI API密钥,用于访问GPT模型。获取方式:https://platform.openai.com/api-keys",
},
{
"name": "OPENAI_API_BASE_URL",
"label": "OpenAI API基础URL",
"type": "text",
"required": False,
"help": "OpenAI API的基础URL,可选。如果使用代理或自定义端点,请设置此项。",
},
{
"name": "QWEN_API_KEY",
"label": "阿里云Qwen API密钥",
"type": "password",
"required": False,
"help": "阿里云Qwen API密钥,用于访问Qwen模型。获取方式:https://help.aliyun.com/zh/model-studio/developer-reference/get-api-key",
},
{
"name": "DEEPSEEK_API_KEY",
"label": "DeepSeek API密钥",
"type": "password",
"required": False,
"help": "DeepSeek API密钥,用于访问DeepSeek模型。获取方式:https://platform.deepseek.com/api_keys",
},
],
"搜索工具": [
{
"name": "GOOGLE_API_KEY",
"label": "Google API密钥",
"type": "password",
"required": False,
"help": "Google搜索API密钥,用于网络搜索功能。获取方式:https://developers.google.com/custom-search/v1/overview",
},
{
"name": "SEARCH_ENGINE_ID",
"label": "搜索引擎ID",
"type": "text",
"required": False,
"help": "Google自定义搜索引擎ID,与Google API密钥配合使用。获取方式:https://developers.google.com/custom-search/v1/overview",
},
],
"其他工具": [
{
"name": "HF_TOKEN",
"label": "Hugging Face令牌",
"type": "password",
"required": False,
"help": "Hugging Face API令牌,用于访问Hugging Face模型和数据集。获取方式:https://huggingface.co/join",
},
{
"name": "CHUNKR_API_KEY",
"label": "Chunkr API密钥",
"type": "password",
"required": False,
"help": "Chunkr API密钥,用于文档处理功能。获取方式:https://chunkr.ai/",
},
{
"name": "FIRECRAWL_API_KEY",
"label": "Firecrawl API密钥",
"type": "password",
"required": False,
"help": "Firecrawl API密钥,用于网页爬取功能。获取方式:https://www.firecrawl.dev/",
},
],
"自定义环境变量": [], # 用户自定义的环境变量将存储在这里
}
def get_script_info(script_name):
"""获取脚本的详细信息"""
return SCRIPT_DESCRIPTIONS.get(script_name, "无描述信息")
def load_env_vars():
"""加载环境变量"""
env_vars = {}
# 尝试从.env文件加载
dotenv.load_dotenv()
# 获取所有环境变量
for group in ENV_GROUPS.values():
for var in group:
env_vars[var["name"]] = os.environ.get(var["name"], "")
# 加载.env文件中可能存在的其他环境变量
if Path(".env").exists():
try:
with open(".env", "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line and not line.startswith("#") and "=" in line:
try:
key, value = line.split("=", 1)
key = key.strip()
value = value.strip()
# 处理引号包裹的值
if (value.startswith('"') and value.endswith('"')) or (
value.startswith("'") and value.endswith("'")
):
value = value[1:-1] # 移除首尾的引号
# 检查是否是已知的环境变量
known_var = False
for group in ENV_GROUPS.values():
if any(var["name"] == key for var in group):
known_var = True
break
# 如果不是已知的环境变量,添加到自定义环境变量组
if not known_var and key not in env_vars:
ENV_GROUPS["自定义环境变量"].append(
{
"name": key,
"label": key,
"type": "text",
"required": False,
"help": "用户自定义环境变量",
}
)
env_vars[key] = value
except Exception as e:
print(f"解析环境变量行时出错: {line}, 错误: {str(e)}")
except Exception as e:
print(f"加载.env文件时出错: {str(e)}")
return env_vars
def save_env_vars(env_vars):
"""保存环境变量到.env文件"""
# 读取现有的.env文件内容
env_path = Path(".env")
existing_content = {}
if env_path.exists():
try:
with open(env_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line and not line.startswith("#") and "=" in line:
try:
key, value = line.split("=", 1)
existing_content[key.strip()] = value.strip()
except Exception as e:
print(f"解析环境变量行时出错: {line}, 错误: {str(e)}")
except Exception as e:
print(f"读取.env文件时出错: {str(e)}")
# 更新环境变量
for key, value in env_vars.items():
if value is not None: # 允许空字符串值,但不允许None
# 确保值是字符串形式
value = str(value) # 确保值是字符串
# 检查值是否已经被引号包裹
if (value.startswith('"') and value.endswith('"')) or (
value.startswith("'") and value.endswith("'")
):
# 已经被引号包裹,保持原样
existing_content[key] = value
# 更新环境变量时移除引号
os.environ[key] = value[1:-1]
else:
# 没有被引号包裹,添加双引号
# 用双引号包裹值,确保特殊字符被正确处理
quoted_value = f'"{value}"'
existing_content[key] = quoted_value
# 同时更新当前进程的环境变量(使用未引用的值)
os.environ[key] = value
# 写入.env文件
try:
with open(env_path, "w", encoding="utf-8") as f:
for key, value in existing_content.items():
f.write(f"{key}={value}\n")
except Exception as e:
print(f"写入.env文件时出错: {str(e)}")
return f"❌ 保存环境变量失败: {str(e)}"
return "✅ 环境变量已保存"
def add_custom_env_var(name, value, var_type):
"""添加自定义环境变量"""
if not name:
return "❌ 环境变量名不能为空", None
# 检查是否已存在同名环境变量
for group in ENV_GROUPS.values():
if any(var["name"] == name for var in group):
return f"❌ 环境变量 {name} 已存在", None
# 添加到自定义环境变量组
ENV_GROUPS["自定义环境变量"].append(
{
"name": name,
"label": name,
"type": var_type,
"required": False,
"help": "用户自定义环境变量",
}
)
# 保存环境变量
env_vars = {name: value}
save_env_vars(env_vars)
# 返回成功消息和更新后的环境变量组
return f"✅ 已添加环境变量 {name}", ENV_GROUPS["自定义环境变量"]
def update_custom_env_var(name, value, var_type):
"""更改自定义环境变量"""
if not name:
return "❌ 环境变量名不能为空", None
# 检查环境变量是否存在于自定义环境变量组中
found = False
for i, var in enumerate(ENV_GROUPS["自定义环境变量"]):
if var["name"] == name:
# 更新类型
ENV_GROUPS["自定义环境变量"][i]["type"] = var_type
found = True
break
if not found:
return f"❌ 自定义环境变量 {name} 不存在", None
# 保存环境变量值
env_vars = {name: value}
save_env_vars(env_vars)
# 返回成功消息和更新后的环境变量组
return f"✅ 已更新环境变量 {name}", ENV_GROUPS["自定义环境变量"]
def delete_custom_env_var(name):
"""删除自定义环境变量"""
if not name:
return "❌ 环境变量名不能为空", None
# 检查环境变量是否存在于自定义环境变量组中
found = False
for i, var in enumerate(ENV_GROUPS["自定义环境变量"]):
if var["name"] == name:
# 从自定义环境变量组中删除
del ENV_GROUPS["自定义环境变量"][i]
found = True
break
if not found:
return f"❌ 自定义环境变量 {name} 不存在", None
# 从.env文件中删除该环境变量
env_path = Path(".env")
if env_path.exists():
try:
with open(env_path, "r", encoding="utf-8") as f:
lines = f.readlines()
with open(env_path, "w", encoding="utf-8") as f:
for line in lines:
try:
# 更精确地匹配环境变量行
line_stripped = line.strip()
# 检查是否为注释行或空行
if not line_stripped or line_stripped.startswith("#"):
f.write(line) # 保留注释行和空行
continue
# 检查是否包含等号
if "=" not in line_stripped:
f.write(line) # 保留不包含等号的行
continue
# 提取变量名并检查是否与要删除的变量匹配
var_name = line_stripped.split("=", 1)[0].strip()
if var_name != name:
f.write(line) # 保留不匹配的变量
except Exception as e:
print(f"处理.env文件行时出错: {line}, 错误: {str(e)}")
# 出错时保留原行
f.write(line)
except Exception as e:
print(f"删除环境变量时出错: {str(e)}")
return f"❌ 删除环境变量失败: {str(e)}", None
# 从当前进程的环境变量中删除
if name in os.environ:
del os.environ[name]
# 返回成功消息和更新后的环境变量组
return f"✅ 已删除环境变量 {name}", ENV_GROUPS["自定义环境变量"]
def terminate_process():
"""终止当前运行的进程"""
global current_process
with process_lock:
if current_process is not None and current_process.poll() is None:
try:
# 在Windows上使用taskkill强制终止进程树
if os.name == "nt":
# 获取进程ID
pid = current_process.pid
# 使用taskkill命令终止进程及其子进程 - 避免使用shell=True以提高安全性
try:
subprocess.run(
["taskkill", "/F", "/T", "/PID", str(pid)], check=False
)
except subprocess.SubprocessError as e:
log_queue.put(f"终止进程时出错: {str(e)}\n")
return f"❌ 终止进程时出错: {str(e)}"
else:
# 在Unix上使用SIGTERM和SIGKILL
current_process.terminate()
try:
current_process.wait(timeout=3)
except subprocess.TimeoutExpired:
current_process.kill()
# 等待进程终止
try:
current_process.wait(timeout=2)
except subprocess.TimeoutExpired:
pass # 已经尝试强制终止,忽略超时
log_queue.put("进程已终止\n")
return "✅ 进程已终止"
except Exception as e:
log_queue.put(f"终止进程时出错: {str(e)}\n")
return f"❌ 终止进程时出错: {str(e)}"
else:
return "❌ 没有正在运行的进程"
def run_script(script_dropdown, question, progress=gr.Progress()):
"""运行选定的脚本并返回输出"""
global current_process
script_name = SCRIPTS.get(script_dropdown)
if not script_name:
return "❌ 无效的脚本选择", "", "", "", None
if not question.strip():
return "请输入问题!", "", "", "", None
# 清空日志队列
while not log_queue.empty():
log_queue.get()
# 创建日志目录
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
# 创建带时间戳的日志文件
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = log_dir / f"{script_name.replace('.py', '')}_{timestamp}.log"
# 构建命令
# 获取当前脚本所在的基础路径
base_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
cmd = [
sys.executable,
os.path.join(base_path, "owl", "script_adapter.py"),
os.path.join(base_path, "owl", script_name),
]
# 创建环境变量副本并添加问题
env = os.environ.copy()
# 确保问题是字符串类型
if not isinstance(question, str):
question = str(question)
# 保留换行符,但确保是有效的字符串
env["OWL_QUESTION"] = question
# 启动进程
with process_lock:
current_process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
env=env,
encoding="utf-8",
)
# 创建线程来读取输出
def read_output():
try:
# 使用唯一的时间戳确保日志文件名不重复
timestamp_unique = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
unique_log_file = (
log_dir / f"{script_name.replace('.py', '')}_{timestamp_unique}.log"
)
# 使用这个唯一的文件名写入日志
with open(unique_log_file, "w", encoding="utf-8") as f:
# 更新全局日志文件路径
nonlocal log_file
log_file = unique_log_file
for line in iter(current_process.stdout.readline, ""):
if line:
# 写入日志文件
f.write(line)
f.flush()
# 添加到队列
log_queue.put(line)
except Exception as e:
log_queue.put(f"读取输出时出错: {str(e)}\n")
# 启动读取线程
threading.Thread(target=read_output, daemon=True).start()
# 收集日志
logs = []
progress(0, desc="正在运行...")
# 等待进程完成或超时
start_time = time.time()
timeout = 1800 # 30分钟超时
while current_process.poll() is None:
# 检查是否超时
if time.time() - start_time > timeout:
with process_lock:
if current_process.poll() is None:
if os.name == "nt":
current_process.send_signal(signal.CTRL_BREAK_EVENT)
else:
current_process.terminate()
log_queue.put("执行超时,已终止进程\n")
break
# 从队列获取日志
while not log_queue.empty():
log = log_queue.get()
logs.append(log)
# 更新进度
elapsed = time.time() - start_time
progress(min(elapsed / 300, 0.99), desc="正在运行...")
# 短暂休眠以减少CPU使用
time.sleep(0.1)
# 每秒更新一次日志显示
yield (
status_message(current_process),
extract_answer(logs),
"".join(logs),
str(log_file),
None,
)
# 获取剩余日志
while not log_queue.empty():
logs.append(log_queue.get())
# 提取聊天历史(如果有)
chat_history = extract_chat_history(logs)
# 返回最终状态和日志
return (
status_message(current_process),
extract_answer(logs),
"".join(logs),
str(log_file),
chat_history,
)
def status_message(process):
"""根据进程状态返回状态消息"""
if process.poll() is None:
return "⏳ 正在运行..."
elif process.returncode == 0:
return "✅ 执行成功"
else:
return f"❌ 执行失败 (返回码: {process.returncode})"
def extract_answer(logs):
"""从日志中提取答案"""
answer = ""
for log in logs:
if "Answer:" in log:
answer = log.split("Answer:", 1)[1].strip()
break
return answer
def extract_chat_history(logs):
"""尝试从日志中提取聊天历史"""
try:
chat_json_str = ""
capture_json = False
for log in logs:
if "chat_history" in log:
# 开始捕获JSON
start_idx = log.find("[")
if start_idx != -1:
capture_json = True
chat_json_str = log[start_idx:]
elif capture_json:
# 继续捕获JSON直到找到匹配的结束括号
chat_json_str += log
if "]" in log:
# 找到结束括号,尝试解析JSON
end_idx = chat_json_str.rfind("]") + 1
if end_idx > 0:
try:
# 清理可能的额外文本
json_str = chat_json_str[:end_idx].strip()
chat_data = json.loads(json_str)
# 格式化为Gradio聊天组件可用的格式
formatted_chat = []
for msg in chat_data:
if "role" in msg and "content" in msg:
role = "用户" if msg["role"] == "user" else "助手"
formatted_chat.append([role, msg["content"]])
return formatted_chat
except json.JSONDecodeError:
# 如果解析失败,继续捕获
pass
except Exception:
# 其他错误,停止捕获
capture_json = False
except Exception:
pass
return None
def create_ui():
"""创建Gradio界面"""
# 加载环境变量
env_vars = load_env_vars()
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as app:
gr.Markdown(
"""
# 🦉 OWL 智能助手运行平台
选择一个模型并输入您的问题,系统将运行相应的脚本并显示结果。
"""
)
with gr.Tabs():
with gr.TabItem("运行模式"):
with gr.Row():
with gr.Column(scale=1):
# 确保默认值是SCRIPTS中存在的键
default_script = list(SCRIPTS.keys())[0] if SCRIPTS else None
script_dropdown = gr.Dropdown(
choices=list(SCRIPTS.keys()),
value=default_script,
label="选择模式",
)
script_info = gr.Textbox(
value=get_script_info(default_script)
if default_script
else "",
label="模型描述",
interactive=False,
)
script_dropdown.change(
fn=lambda x: get_script_info(x),
inputs=script_dropdown,
outputs=script_info,
)
question_input = gr.Textbox(
lines=8,
placeholder="请输入您的问题...",
label="问题",
elem_id="question_input",
show_copy_button=True,
)
gr.Markdown(
"""
> **注意**: 您输入的问题将替换脚本中的默认问题。系统会自动处理问题的替换,确保您的问题被正确使用。
> 支持多行输入,换行将被保留。
"""
)
with gr.Row():
run_button = gr.Button("运行", variant="primary")
stop_button = gr.Button("终止", variant="stop")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("结果"):
status_output = gr.Textbox(label="状态")
answer_output = gr.Textbox(label="回答", lines=10)
log_file_output = gr.Textbox(label="日志文件路径")
with gr.TabItem("运行日志"):
log_output = gr.Textbox(label="完整日志", lines=25)
with gr.TabItem("聊天历史"):
chat_output = gr.Chatbot(label="对话历史")
# 示例问题
examples = [
[
"Qwen Mini (中文)",
"浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格",
],
[
"DeepSeek (中文)",
"请分析GitHub上CAMEL-AI项目的最新统计数据。找出该项目的星标数量、贡献者数量和最近的活跃度。然后,创建一个简单的Excel表格来展示这些数据,并生成一个柱状图来可视化这些指标。最后,总结CAMEL项目的受欢迎程度和发展趋势。",
],
[
"Default",
"Navigate to Amazon.com and identify one product that is attractive to coders. Please provide me with the product name and price. No need to verify your answer.",
],
]
gr.Examples(examples=examples, inputs=[script_dropdown, question_input])
with gr.TabItem("环境变量配置"):
env_inputs = {}
save_status = gr.Textbox(label="保存状态", interactive=False)
# 添加自定义环境变量部分
with gr.Accordion("添加自定义环境变量", open=True):
with gr.Row():
new_var_name = gr.Textbox(
label="环境变量名", placeholder="例如:MY_CUSTOM_API_KEY"
)
new_var_value = gr.Textbox(
label="环境变量值", placeholder="输入值"
)
new_var_type = gr.Dropdown(
choices=["text", "password"], value="text", label="类型"
)
add_var_button = gr.Button("添加环境变量", variant="primary")
add_var_status = gr.Textbox(label="添加状态", interactive=False)
# 自定义环境变量列表
custom_vars_list = gr.JSON(
value=ENV_GROUPS["自定义环境变量"],
label="已添加的自定义环境变量",
visible=len(ENV_GROUPS["自定义环境变量"]) > 0,
)
# 更改和删除自定义环境变量部分
with gr.Accordion(
"更改或删除自定义环境变量",
open=True,
visible=len(ENV_GROUPS["自定义环境变量"]) > 0,
) as update_delete_accordion:
with gr.Row():
# 创建下拉菜单,显示所有自定义环境变量
custom_var_dropdown = gr.Dropdown(
choices=[
var["name"] for var in ENV_GROUPS["自定义环境变量"]
],
label="选择环境变量",
interactive=True,
)
update_var_value = gr.Textbox(
label="新的环境变量值", placeholder="输入新值"
)
update_var_type = gr.Dropdown(
choices=["text", "password"], value="text", label="类型"
)
with gr.Row():
update_var_button = gr.Button("更新环境变量", variant="primary")
delete_var_button = gr.Button("删除环境变量", variant="stop")
update_var_status = gr.Textbox(label="操作状态", interactive=False)
# 添加环境变量按钮点击事件
add_var_button.click(
fn=add_custom_env_var,
inputs=[new_var_name, new_var_value, new_var_type],
outputs=[add_var_status, custom_vars_list],
).then(
fn=lambda vars: {"visible": len(vars) > 0},
inputs=[custom_vars_list],
outputs=[update_delete_accordion],
)
# 更新环境变量按钮点击事件
update_var_button.click(
fn=update_custom_env_var,
inputs=[custom_var_dropdown, update_var_value, update_var_type],
outputs=[update_var_status, custom_vars_list],
)
# 删除环境变量按钮点击事件
delete_var_button.click(
fn=delete_custom_env_var,
inputs=[custom_var_dropdown],
outputs=[update_var_status, custom_vars_list],
).then(
fn=lambda vars: {"visible": len(vars) > 0},
inputs=[custom_vars_list],
outputs=[update_delete_accordion],
)
# 当自定义环境变量列表更新时,更新下拉菜单选项
custom_vars_list.change(
fn=lambda vars: {
"choices": [var["name"] for var in vars],
"value": None,
},
inputs=[custom_vars_list],
outputs=[custom_var_dropdown],
)
# 现有环境变量配置
for group_name, vars in ENV_GROUPS.items():
if (
group_name != "自定义环境变量" or len(vars) > 0
): # 只显示非空的自定义环境变量组
with gr.Accordion(
group_name, open=(group_name != "自定义环境变量")
):
for var in vars:
# 添加帮助信息
gr.Markdown(f"**{var['help']}**")
if var["type"] == "password":
env_inputs[var["name"]] = gr.Textbox(
value=env_vars.get(var["name"], ""),
label=var["label"],
placeholder=f"请输入{var['label']}",
type="password",
)
else:
env_inputs[var["name"]] = gr.Textbox(
value=env_vars.get(var["name"], ""),
label=var["label"],
placeholder=f"请输入{var['label']}",
)
save_button = gr.Button("保存环境变量", variant="primary")
# 保存环境变量
save_inputs = [
env_inputs[var_name]
for group in ENV_GROUPS.values()
for var in group
for var_name in [var["name"]]
if var_name in env_inputs
]
save_button.click(
fn=lambda *values: save_env_vars(
dict(
zip(
[
var["name"]
for group in ENV_GROUPS.values()
for var in group
if var["name"] in env_inputs
],
values,
)
)
),
inputs=save_inputs,
outputs=save_status,
)
# 运行脚本
run_button.click(
fn=run_script,
inputs=[script_dropdown, question_input],
outputs=[
status_output,
answer_output,
log_output,
log_file_output,
chat_output,
],
show_progress=True,
)
# 终止运行
stop_button.click(fn=terminate_process, inputs=[], outputs=[status_output])
# 添加页脚
gr.Markdown(
"""
### 📝 使用说明
- 选择一个模型并输入您的问题
- 点击"运行"按钮开始执行
- 如需终止运行,点击"终止"按钮
- 在"结果"标签页查看执行状态和回答
- 在"运行日志"标签页查看完整日志
- 在"聊天历史"标签页查看对话历史(如果有)
- 在"环境变量配置"标签页配置API密钥和其他环境变量
- 您可以添加自定义环境变量,满足特殊需求
### ⚠️ 注意事项
- 运行某些模型可能需要API密钥,请确保在"环境变量配置"标签页中设置了相应的环境变量
- 某些脚本可能需要较长时间运行,请耐心等待
- 如果运行超过30分钟,进程将自动终止
- 您输入的问题将替换脚本中的默认问题,确保问题与所选模型兼容
"""
)
return app
if __name__ == "__main__":
# 创建并启动应用
app = create_ui()
app.queue().launch(share=True)