File size: 34,764 Bytes
1482718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
import sys
import gradio as gr
import subprocess
import threading
import time
from datetime import datetime
import queue
from pathlib import Path
import json
import signal
import dotenv
# 设置日志队列
log_queue: queue.Queue[str] = queue.Queue()
# 当前运行的进程
current_process = None
process_lock = threading.Lock()
# 脚本选项
SCRIPTS = {
"Qwen Mini (中文)": "run_qwen_mini_zh.py",
"Qwen (中文)": "run_qwen_zh.py",
"Mini": "run_mini.py",
"DeepSeek (中文)": "run_deepseek_zh.py",
"Default": "run.py",
"GAIA Roleplaying": "run_gaia_roleplaying.py",
"OpenAI Compatible": "run_openai_compatiable_model.py",
"Ollama": "run_ollama.py",
"Terminal": "run_terminal_zh.py",
}
# 脚本描述
SCRIPT_DESCRIPTIONS = {
"Qwen Mini (中文)": "使用阿里云Qwen模型的中文版本,适合中文问答和任务",
"Qwen (中文)": "使用阿里云Qwen模型,支持多种工具和功能",
"Mini": "轻量级版本,使用OpenAI GPT-4o模型",
"DeepSeek (中文)": "使用DeepSeek模型,适合非多模态任务",
"Default": "默认OWL实现,使用OpenAI GPT-4o模型和全套工具",
"GAIA Roleplaying": "GAIA基准测试实现,用于评估模型能力",
"OpenAI Compatible": "使用兼容OpenAI API的第三方模型,支持自定义API端点",
"Ollama": "使用Ollama API",
"Terminal": "使用本地终端执行python文件",
}
# 环境变量分组
ENV_GROUPS = {
"模型API": [
{
"name": "OPENAI_API_KEY",
"label": "OpenAI API密钥",
"type": "password",
"required": False,
"help": "OpenAI API密钥,用于访问GPT模型。获取方式:https://platform.openai.com/api-keys",
},
{
"name": "OPENAI_API_BASE_URL",
"label": "OpenAI API基础URL",
"type": "text",
"required": False,
"help": "OpenAI API的基础URL,可选。如果使用代理或自定义端点,请设置此项。",
},
{
"name": "QWEN_API_KEY",
"label": "阿里云Qwen API密钥",
"type": "password",
"required": False,
"help": "阿里云Qwen API密钥,用于访问Qwen模型。获取方式:https://help.aliyun.com/zh/model-studio/developer-reference/get-api-key",
},
{
"name": "DEEPSEEK_API_KEY",
"label": "DeepSeek API密钥",
"type": "password",
"required": False,
"help": "DeepSeek API密钥,用于访问DeepSeek模型。获取方式:https://platform.deepseek.com/api_keys",
},
],
"搜索工具": [
{
"name": "GOOGLE_API_KEY",
"label": "Google API密钥",
"type": "password",
"required": False,
"help": "Google搜索API密钥,用于网络搜索功能。获取方式:https://developers.google.com/custom-search/v1/overview",
},
{
"name": "SEARCH_ENGINE_ID",
"label": "搜索引擎ID",
"type": "text",
"required": False,
"help": "Google自定义搜索引擎ID,与Google API密钥配合使用。获取方式:https://developers.google.com/custom-search/v1/overview",
},
],
"其他工具": [
{
"name": "HF_TOKEN",
"label": "Hugging Face令牌",
"type": "password",
"required": False,
"help": "Hugging Face API令牌,用于访问Hugging Face模型和数据集。获取方式:https://huggingface.co/join",
},
{
"name": "CHUNKR_API_KEY",
"label": "Chunkr API密钥",
"type": "password",
"required": False,
"help": "Chunkr API密钥,用于文档处理功能。获取方式:https://chunkr.ai/",
},
{
"name": "FIRECRAWL_API_KEY",
"label": "Firecrawl API密钥",
"type": "password",
"required": False,
"help": "Firecrawl API密钥,用于网页爬取功能。获取方式:https://www.firecrawl.dev/",
},
],
"自定义环境变量": [], # 用户自定义的环境变量将存储在这里
}
def get_script_info(script_name):
"""获取脚本的详细信息"""
return SCRIPT_DESCRIPTIONS.get(script_name, "无描述信息")
def load_env_vars():
"""加载环境变量"""
env_vars = {}
# 尝试从.env文件加载
dotenv.load_dotenv()
# 获取所有环境变量
for group in ENV_GROUPS.values():
for var in group:
env_vars[var["name"]] = os.environ.get(var["name"], "")
# 加载.env文件中可能存在的其他环境变量
if Path(".env").exists():
try:
with open(".env", "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line and not line.startswith("#") and "=" in line:
try:
key, value = line.split("=", 1)
key = key.strip()
value = value.strip()
# 处理引号包裹的值
if (value.startswith('"') and value.endswith('"')) or (
value.startswith("'") and value.endswith("'")
):
value = value[1:-1] # 移除首尾的引号
# 检查是否是已知的环境变量
known_var = False
for group in ENV_GROUPS.values():
if any(var["name"] == key for var in group):
known_var = True
break
# 如果不是已知的环境变量,添加到自定义环境变量组
if not known_var and key not in env_vars:
ENV_GROUPS["自定义环境变量"].append(
{
"name": key,
"label": key,
"type": "text",
"required": False,
"help": "用户自定义环境变量",
}
)
env_vars[key] = value
except Exception as e:
print(f"解析环境变量行时出错: {line}, 错误: {str(e)}")
except Exception as e:
print(f"加载.env文件时出错: {str(e)}")
return env_vars
def save_env_vars(env_vars):
"""保存环境变量到.env文件"""
# 读取现有的.env文件内容
env_path = Path(".env")
existing_content = {}
if env_path.exists():
try:
with open(env_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line and not line.startswith("#") and "=" in line:
try:
key, value = line.split("=", 1)
existing_content[key.strip()] = value.strip()
except Exception as e:
print(f"解析环境变量行时出错: {line}, 错误: {str(e)}")
except Exception as e:
print(f"读取.env文件时出错: {str(e)}")
# 更新环境变量
for key, value in env_vars.items():
if value is not None: # 允许空字符串值,但不允许None
# 确保值是字符串形式
value = str(value) # 确保值是字符串
# 检查值是否已经被引号包裹
if (value.startswith('"') and value.endswith('"')) or (
value.startswith("'") and value.endswith("'")
):
# 已经被引号包裹,保持原样
existing_content[key] = value
# 更新环境变量时移除引号
os.environ[key] = value[1:-1]
else:
# 没有被引号包裹,添加双引号
# 用双引号包裹值,确保特殊字符被正确处理
quoted_value = f'"{value}"'
existing_content[key] = quoted_value
# 同时更新当前进程的环境变量(使用未引用的值)
os.environ[key] = value
# 写入.env文件
try:
with open(env_path, "w", encoding="utf-8") as f:
for key, value in existing_content.items():
f.write(f"{key}={value}\n")
except Exception as e:
print(f"写入.env文件时出错: {str(e)}")
return f"❌ 保存环境变量失败: {str(e)}"
return "✅ 环境变量已保存"
def add_custom_env_var(name, value, var_type):
"""添加自定义环境变量"""
if not name:
return "❌ 环境变量名不能为空", None
# 检查是否已存在同名环境变量
for group in ENV_GROUPS.values():
if any(var["name"] == name for var in group):
return f"❌ 环境变量 {name} 已存在", None
# 添加到自定义环境变量组
ENV_GROUPS["自定义环境变量"].append(
{
"name": name,
"label": name,
"type": var_type,
"required": False,
"help": "用户自定义环境变量",
}
)
# 保存环境变量
env_vars = {name: value}
save_env_vars(env_vars)
# 返回成功消息和更新后的环境变量组
return f"✅ 已添加环境变量 {name}", ENV_GROUPS["自定义环境变量"]
def update_custom_env_var(name, value, var_type):
"""更改自定义环境变量"""
if not name:
return "❌ 环境变量名不能为空", None
# 检查环境变量是否存在于自定义环境变量组中
found = False
for i, var in enumerate(ENV_GROUPS["自定义环境变量"]):
if var["name"] == name:
# 更新类型
ENV_GROUPS["自定义环境变量"][i]["type"] = var_type
found = True
break
if not found:
return f"❌ 自定义环境变量 {name} 不存在", None
# 保存环境变量值
env_vars = {name: value}
save_env_vars(env_vars)
# 返回成功消息和更新后的环境变量组
return f"✅ 已更新环境变量 {name}", ENV_GROUPS["自定义环境变量"]
def delete_custom_env_var(name):
"""删除自定义环境变量"""
if not name:
return "❌ 环境变量名不能为空", None
# 检查环境变量是否存在于自定义环境变量组中
found = False
for i, var in enumerate(ENV_GROUPS["自定义环境变量"]):
if var["name"] == name:
# 从自定义环境变量组中删除
del ENV_GROUPS["自定义环境变量"][i]
found = True
break
if not found:
return f"❌ 自定义环境变量 {name} 不存在", None
# 从.env文件中删除该环境变量
env_path = Path(".env")
if env_path.exists():
try:
with open(env_path, "r", encoding="utf-8") as f:
lines = f.readlines()
with open(env_path, "w", encoding="utf-8") as f:
for line in lines:
try:
# 更精确地匹配环境变量行
line_stripped = line.strip()
# 检查是否为注释行或空行
if not line_stripped or line_stripped.startswith("#"):
f.write(line) # 保留注释行和空行
continue
# 检查是否包含等号
if "=" not in line_stripped:
f.write(line) # 保留不包含等号的行
continue
# 提取变量名并检查是否与要删除的变量匹配
var_name = line_stripped.split("=", 1)[0].strip()
if var_name != name:
f.write(line) # 保留不匹配的变量
except Exception as e:
print(f"处理.env文件行时出错: {line}, 错误: {str(e)}")
# 出错时保留原行
f.write(line)
except Exception as e:
print(f"删除环境变量时出错: {str(e)}")
return f"❌ 删除环境变量失败: {str(e)}", None
# 从当前进程的环境变量中删除
if name in os.environ:
del os.environ[name]
# 返回成功消息和更新后的环境变量组
return f"✅ 已删除环境变量 {name}", ENV_GROUPS["自定义环境变量"]
def terminate_process():
"""终止当前运行的进程"""
global current_process
with process_lock:
if current_process is not None and current_process.poll() is None:
try:
# 在Windows上使用taskkill强制终止进程树
if os.name == "nt":
# 获取进程ID
pid = current_process.pid
# 使用taskkill命令终止进程及其子进程 - 避免使用shell=True以提高安全性
try:
subprocess.run(
["taskkill", "/F", "/T", "/PID", str(pid)], check=False
)
except subprocess.SubprocessError as e:
log_queue.put(f"终止进程时出错: {str(e)}\n")
return f"❌ 终止进程时出错: {str(e)}"
else:
# 在Unix上使用SIGTERM和SIGKILL
current_process.terminate()
try:
current_process.wait(timeout=3)
except subprocess.TimeoutExpired:
current_process.kill()
# 等待进程终止
try:
current_process.wait(timeout=2)
except subprocess.TimeoutExpired:
pass # 已经尝试强制终止,忽略超时
log_queue.put("进程已终止\n")
return "✅ 进程已终止"
except Exception as e:
log_queue.put(f"终止进程时出错: {str(e)}\n")
return f"❌ 终止进程时出错: {str(e)}"
else:
return "❌ 没有正在运行的进程"
def run_script(script_dropdown, question, progress=gr.Progress()):
"""运行选定的脚本并返回输出"""
global current_process
script_name = SCRIPTS.get(script_dropdown)
if not script_name:
return "❌ 无效的脚本选择", "", "", "", None
if not question.strip():
return "请输入问题!", "", "", "", None
# 清空日志队列
while not log_queue.empty():
log_queue.get()
# 创建日志目录
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
# 创建带时间戳的日志文件
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = log_dir / f"{script_name.replace('.py', '')}_{timestamp}.log"
# 构建命令
# 获取当前脚本所在的基础路径
base_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
cmd = [
sys.executable,
os.path.join(base_path, "owl", "script_adapter.py"),
os.path.join(base_path, "owl", script_name),
]
# 创建环境变量副本并添加问题
env = os.environ.copy()
# 确保问题是字符串类型
if not isinstance(question, str):
question = str(question)
# 保留换行符,但确保是有效的字符串
env["OWL_QUESTION"] = question
# 启动进程
with process_lock:
current_process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
env=env,
encoding="utf-8",
)
# 创建线程来读取输出
def read_output():
try:
# 使用唯一的时间戳确保日志文件名不重复
timestamp_unique = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
unique_log_file = (
log_dir / f"{script_name.replace('.py', '')}_{timestamp_unique}.log"
)
# 使用这个唯一的文件名写入日志
with open(unique_log_file, "w", encoding="utf-8") as f:
# 更新全局日志文件路径
nonlocal log_file
log_file = unique_log_file
for line in iter(current_process.stdout.readline, ""):
if line:
# 写入日志文件
f.write(line)
f.flush()
# 添加到队列
log_queue.put(line)
except Exception as e:
log_queue.put(f"读取输出时出错: {str(e)}\n")
# 启动读取线程
threading.Thread(target=read_output, daemon=True).start()
# 收集日志
logs = []
progress(0, desc="正在运行...")
# 等待进程完成或超时
start_time = time.time()
timeout = 1800 # 30分钟超时
while current_process.poll() is None:
# 检查是否超时
if time.time() - start_time > timeout:
with process_lock:
if current_process.poll() is None:
if os.name == "nt":
current_process.send_signal(signal.CTRL_BREAK_EVENT)
else:
current_process.terminate()
log_queue.put("执行超时,已终止进程\n")
break
# 从队列获取日志
while not log_queue.empty():
log = log_queue.get()
logs.append(log)
# 更新进度
elapsed = time.time() - start_time
progress(min(elapsed / 300, 0.99), desc="正在运行...")
# 短暂休眠以减少CPU使用
time.sleep(0.1)
# 每秒更新一次日志显示
yield (
status_message(current_process),
extract_answer(logs),
"".join(logs),
str(log_file),
None,
)
# 获取剩余日志
while not log_queue.empty():
logs.append(log_queue.get())
# 提取聊天历史(如果有)
chat_history = extract_chat_history(logs)
# 返回最终状态和日志
return (
status_message(current_process),
extract_answer(logs),
"".join(logs),
str(log_file),
chat_history,
)
def status_message(process):
"""根据进程状态返回状态消息"""
if process.poll() is None:
return "⏳ 正在运行..."
elif process.returncode == 0:
return "✅ 执行成功"
else:
return f"❌ 执行失败 (返回码: {process.returncode})"
def extract_answer(logs):
"""从日志中提取答案"""
answer = ""
for log in logs:
if "Answer:" in log:
answer = log.split("Answer:", 1)[1].strip()
break
return answer
def extract_chat_history(logs):
"""尝试从日志中提取聊天历史"""
try:
chat_json_str = ""
capture_json = False
for log in logs:
if "chat_history" in log:
# 开始捕获JSON
start_idx = log.find("[")
if start_idx != -1:
capture_json = True
chat_json_str = log[start_idx:]
elif capture_json:
# 继续捕获JSON直到找到匹配的结束括号
chat_json_str += log
if "]" in log:
# 找到结束括号,尝试解析JSON
end_idx = chat_json_str.rfind("]") + 1
if end_idx > 0:
try:
# 清理可能的额外文本
json_str = chat_json_str[:end_idx].strip()
chat_data = json.loads(json_str)
# 格式化为Gradio聊天组件可用的格式
formatted_chat = []
for msg in chat_data:
if "role" in msg and "content" in msg:
role = "用户" if msg["role"] == "user" else "助手"
formatted_chat.append([role, msg["content"]])
return formatted_chat
except json.JSONDecodeError:
# 如果解析失败,继续捕获
pass
except Exception:
# 其他错误,停止捕获
capture_json = False
except Exception:
pass
return None
def create_ui():
"""创建Gradio界面"""
# 加载环境变量
env_vars = load_env_vars()
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as app:
gr.Markdown(
"""
# 🦉 OWL 智能助手运行平台
选择一个模型并输入您的问题,系统将运行相应的脚本并显示结果。
"""
)
with gr.Tabs():
with gr.TabItem("运行模式"):
with gr.Row():
with gr.Column(scale=1):
# 确保默认值是SCRIPTS中存在的键
default_script = list(SCRIPTS.keys())[0] if SCRIPTS else None
script_dropdown = gr.Dropdown(
choices=list(SCRIPTS.keys()),
value=default_script,
label="选择模式",
)
script_info = gr.Textbox(
value=get_script_info(default_script)
if default_script
else "",
label="模型描述",
interactive=False,
)
script_dropdown.change(
fn=lambda x: get_script_info(x),
inputs=script_dropdown,
outputs=script_info,
)
question_input = gr.Textbox(
lines=8,
placeholder="请输入您的问题...",
label="问题",
elem_id="question_input",
show_copy_button=True,
)
gr.Markdown(
"""
> **注意**: 您输入的问题将替换脚本中的默认问题。系统会自动处理问题的替换,确保您的问题被正确使用。
> 支持多行输入,换行将被保留。
"""
)
with gr.Row():
run_button = gr.Button("运行", variant="primary")
stop_button = gr.Button("终止", variant="stop")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("结果"):
status_output = gr.Textbox(label="状态")
answer_output = gr.Textbox(label="回答", lines=10)
log_file_output = gr.Textbox(label="日志文件路径")
with gr.TabItem("运行日志"):
log_output = gr.Textbox(label="完整日志", lines=25)
with gr.TabItem("聊天历史"):
chat_output = gr.Chatbot(label="对话历史")
# 示例问题
examples = [
[
"Qwen Mini (中文)",
"浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格",
],
[
"DeepSeek (中文)",
"请分析GitHub上CAMEL-AI项目的最新统计数据。找出该项目的星标数量、贡献者数量和最近的活跃度。然后,创建一个简单的Excel表格来展示这些数据,并生成一个柱状图来可视化这些指标。最后,总结CAMEL项目的受欢迎程度和发展趋势。",
],
[
"Default",
"Navigate to Amazon.com and identify one product that is attractive to coders. Please provide me with the product name and price. No need to verify your answer.",
],
]
gr.Examples(examples=examples, inputs=[script_dropdown, question_input])
with gr.TabItem("环境变量配置"):
env_inputs = {}
save_status = gr.Textbox(label="保存状态", interactive=False)
# 添加自定义环境变量部分
with gr.Accordion("添加自定义环境变量", open=True):
with gr.Row():
new_var_name = gr.Textbox(
label="环境变量名", placeholder="例如:MY_CUSTOM_API_KEY"
)
new_var_value = gr.Textbox(
label="环境变量值", placeholder="输入值"
)
new_var_type = gr.Dropdown(
choices=["text", "password"], value="text", label="类型"
)
add_var_button = gr.Button("添加环境变量", variant="primary")
add_var_status = gr.Textbox(label="添加状态", interactive=False)
# 自定义环境变量列表
custom_vars_list = gr.JSON(
value=ENV_GROUPS["自定义环境变量"],
label="已添加的自定义环境变量",
visible=len(ENV_GROUPS["自定义环境变量"]) > 0,
)
# 更改和删除自定义环境变量部分
with gr.Accordion(
"更改或删除自定义环境变量",
open=True,
visible=len(ENV_GROUPS["自定义环境变量"]) > 0,
) as update_delete_accordion:
with gr.Row():
# 创建下拉菜单,显示所有自定义环境变量
custom_var_dropdown = gr.Dropdown(
choices=[
var["name"] for var in ENV_GROUPS["自定义环境变量"]
],
label="选择环境变量",
interactive=True,
)
update_var_value = gr.Textbox(
label="新的环境变量值", placeholder="输入新值"
)
update_var_type = gr.Dropdown(
choices=["text", "password"], value="text", label="类型"
)
with gr.Row():
update_var_button = gr.Button("更新环境变量", variant="primary")
delete_var_button = gr.Button("删除环境变量", variant="stop")
update_var_status = gr.Textbox(label="操作状态", interactive=False)
# 添加环境变量按钮点击事件
add_var_button.click(
fn=add_custom_env_var,
inputs=[new_var_name, new_var_value, new_var_type],
outputs=[add_var_status, custom_vars_list],
).then(
fn=lambda vars: {"visible": len(vars) > 0},
inputs=[custom_vars_list],
outputs=[update_delete_accordion],
)
# 更新环境变量按钮点击事件
update_var_button.click(
fn=update_custom_env_var,
inputs=[custom_var_dropdown, update_var_value, update_var_type],
outputs=[update_var_status, custom_vars_list],
)
# 删除环境变量按钮点击事件
delete_var_button.click(
fn=delete_custom_env_var,
inputs=[custom_var_dropdown],
outputs=[update_var_status, custom_vars_list],
).then(
fn=lambda vars: {"visible": len(vars) > 0},
inputs=[custom_vars_list],
outputs=[update_delete_accordion],
)
# 当自定义环境变量列表更新时,更新下拉菜单选项
custom_vars_list.change(
fn=lambda vars: {
"choices": [var["name"] for var in vars],
"value": None,
},
inputs=[custom_vars_list],
outputs=[custom_var_dropdown],
)
# 现有环境变量配置
for group_name, vars in ENV_GROUPS.items():
if (
group_name != "自定义环境变量" or len(vars) > 0
): # 只显示非空的自定义环境变量组
with gr.Accordion(
group_name, open=(group_name != "自定义环境变量")
):
for var in vars:
# 添加帮助信息
gr.Markdown(f"**{var['help']}**")
if var["type"] == "password":
env_inputs[var["name"]] = gr.Textbox(
value=env_vars.get(var["name"], ""),
label=var["label"],
placeholder=f"请输入{var['label']}",
type="password",
)
else:
env_inputs[var["name"]] = gr.Textbox(
value=env_vars.get(var["name"], ""),
label=var["label"],
placeholder=f"请输入{var['label']}",
)
save_button = gr.Button("保存环境变量", variant="primary")
# 保存环境变量
save_inputs = [
env_inputs[var_name]
for group in ENV_GROUPS.values()
for var in group
for var_name in [var["name"]]
if var_name in env_inputs
]
save_button.click(
fn=lambda *values: save_env_vars(
dict(
zip(
[
var["name"]
for group in ENV_GROUPS.values()
for var in group
if var["name"] in env_inputs
],
values,
)
)
),
inputs=save_inputs,
outputs=save_status,
)
# 运行脚本
run_button.click(
fn=run_script,
inputs=[script_dropdown, question_input],
outputs=[
status_output,
answer_output,
log_output,
log_file_output,
chat_output,
],
show_progress=True,
)
# 终止运行
stop_button.click(fn=terminate_process, inputs=[], outputs=[status_output])
# 添加页脚
gr.Markdown(
"""
### 📝 使用说明
- 选择一个模型并输入您的问题
- 点击"运行"按钮开始执行
- 如需终止运行,点击"终止"按钮
- 在"结果"标签页查看执行状态和回答
- 在"运行日志"标签页查看完整日志
- 在"聊天历史"标签页查看对话历史(如果有)
- 在"环境变量配置"标签页配置API密钥和其他环境变量
- 您可以添加自定义环境变量,满足特殊需求
### ⚠️ 注意事项
- 运行某些模型可能需要API密钥,请确保在"环境变量配置"标签页中设置了相应的环境变量
- 某些脚本可能需要较长时间运行,请耐心等待
- 如果运行超过30分钟,进程将自动终止
- 您输入的问题将替换脚本中的默认问题,确保问题与所选模型兼容
"""
)
return app
if __name__ == "__main__":
# 创建并启动应用
app = create_ui()
app.queue().launch(share=True)
|