|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-tiny-22k-384 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: 10-finetuned-spiderTraining20-500 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 10-finetuned-spiderTraining20-500 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2251 |
|
- Accuracy: 0.9439 |
|
- Precision: 0.9422 |
|
- Recall: 0.9425 |
|
- F1: 0.9420 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.9969 | 1.0 | 125 | 0.7141 | 0.7758 | 0.7913 | 0.7716 | 0.7652 | |
|
| 0.7535 | 2.0 | 250 | 0.6724 | 0.8038 | 0.8426 | 0.8040 | 0.8019 | |
|
| 0.6749 | 3.0 | 375 | 0.4999 | 0.8428 | 0.8615 | 0.8378 | 0.8410 | |
|
| 0.4791 | 4.0 | 500 | 0.4593 | 0.8599 | 0.8766 | 0.8529 | 0.8562 | |
|
| 0.4112 | 5.0 | 625 | 0.3726 | 0.8899 | 0.8925 | 0.8852 | 0.8852 | |
|
| 0.3416 | 6.0 | 750 | 0.2770 | 0.9169 | 0.9137 | 0.9161 | 0.9133 | |
|
| 0.3195 | 7.0 | 875 | 0.3013 | 0.9139 | 0.9163 | 0.9069 | 0.9096 | |
|
| 0.1927 | 8.0 | 1000 | 0.2297 | 0.9369 | 0.9364 | 0.9344 | 0.9348 | |
|
| 0.1596 | 9.0 | 1125 | 0.2510 | 0.9329 | 0.9344 | 0.9326 | 0.9324 | |
|
| 0.1907 | 10.0 | 1250 | 0.2251 | 0.9439 | 0.9422 | 0.9425 | 0.9420 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|