|
--- |
|
library_name: diffusers |
|
--- |
|
## EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling |
|
Arxiv: https://arxiv.org/abs/2502.09509 <br> |
|
|
|
|
|
**EQ-VAE** regularizes the latent space of pretrained autoencoders by enforcing equivariance under scaling and rotation transformations. |
|
|
|
--- |
|
#### Model Description |
|
This model is a regularized version of [SD-VAE](https://github.com/CompVis/latent-diffusion). We finetune it with EQ-VAE regularization for 5 epochs on OpenImages. |
|
|
|
## Model Usage |
|
|
|
|
|
2. **Loading the Model** |
|
You can load the model from the Hugging Face Hub: |
|
```python |
|
from transformers import AutoencoderKL |
|
model = AutoencoderKL.from_pretrained("zelaki/eq-vae") |
|
|
|
#### Metrics |
|
Reconstruction performance of eq-vae-ema on Imagenet Validation Set. |
|
|
|
| **Metric** | **Score** | |
|
|------------|-----------| |
|
| **FID** | 0.82 | |
|
| **PSNR** | 25.95 | |
|
| **LPIPS** | 0.141 | |
|
| **SSIM** | 0.72 | |
|
--- |
|
|